Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và \(c^2+1=\left(a+c\right)\left(b+c\right)\)
Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)
\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !
với ab+bc+ca=1, ta có
\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
=> S là số chính phương (ĐPCM)
Có : a^2+1 = a^2+ab+bc+ca = (a^2+ab)+(bc+ca) = (a+b).(a+c)
Tương tự : b^2+1 = (b+c).(b+a)
c^2+1 = (c+a).(c+b)
=> (a^2+1).(b^2+1).(c^2+1) = [(a+b).(b+c).(c+a)]^2 là 1 số chính phương
=> ĐPCM
k mk nha
\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)
\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)
\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)
Ta có
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)
\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)
\(=a^2+b^2+c^2+2\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)
Thay (2) và (3) vào (1)
\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)
\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)
\(=\left[abc-\left(a+b+c\right)\right]^2\)
Gợi ý cách giải: Thế a = 1 - b - c vào P sau đó phân tích số chính phương là ra
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
\(=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(b+c\right)+a\left(b+c\right)\right]\)
\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\rightarrow scp\)
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Lời giải:
Với $ab+bc+ac=1$ thì:
$a^2+1=a^2+ab+bc+ac=(a+b)(a+c)$
$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$
$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$
$\Rightarrow A=(a^2+1)(b^2+1)(c^2+1)=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$ là scp
Ta có đpcm.