Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và \(c^2+1=\left(a+c\right)\left(b+c\right)\)
Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)
\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !
với ab+bc+ca=1, ta có
\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
=> S là số chính phương (ĐPCM)
Ta có:
\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương
Ta có : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+5bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\)
Gọi \(\left(c;a^2c^2+2ac+1-6c-5b\right)=d\)
Khi đó ta có \(\hept{\begin{cases}c⋮d\\a^2c^2+2ac-6c+1-5b⋮d\end{cases}\Rightarrow1-5b⋮d}\)
Đặt \(\hept{\begin{cases}c=xd\\a^2c^2+2ac-6c+1-5b=yd\end{cases}}\left[x,y\in Z;\left(x;y\right)=1\right]\)
\(\Rightarrow c\left(a^2c^2+2a-6c+1-5b\right)=xyd^2\Rightarrow b^2=xyd^2\)
\(\Rightarrow b⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy c là số chính phương.
giả sử c chẵn khi đó ta có:
\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)
Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)
Điều này vô lý!
Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c
Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)
Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)
Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)
\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)
\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left(a+c\right)\left(b+a\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{abc}\left(QĐ\right)\Leftrightarrow ac+bc+ab=1\)
\(\Rightarrow1+a^2=bc+ab+ac+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+c\right)\left(a+b\right)\)
Tương tự: \(1+b^2=\left(a+b\right)\left(b+c\right)\); \(1+c^2=\left(a+c\right)\left(b+c\right)\)
Nhân vế với vế ta được: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)
mà \(\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)là số chính phương => đpcm
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
\(S=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
\(S=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)
\(S=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
là số chính phương (đpcm)