K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)\(a,b,c>0\Rightarrow a+b+c\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

26 tháng 12 2023

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

20 tháng 11 2017

Ta có :

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)

7 tháng 11 2018

Mình cần gấp ai đó giúp mình đi

7 tháng 11 2018

Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)

Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)

\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)

8 tháng 1 2017

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)

( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)

\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)

Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)

\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)

Thế vào: a + b + c = 69

\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)

\(\Rightarrow c=45\)   

\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)  

8 tháng 1 2017

Dùng tính chất dãy tỉ số bằng nhau mà làm

8 tháng 1

pip install pygame

 

12 tháng 11 2016

a) gt => a + b+ c = 4. kết hợp với a+b =5
=> c = -1
a + b + c = 4 kết hợp với b+c = 9 => a = -4
=> b= 10
b) a.b = -6 (1)
b.c= -15 (2)
c.a = 10 (3)
Từ (1) => a = -6/b. Thay a vào (3) được: c = -5/ 3b
Thay c vào (2) được b2 = 9 => b= 3 hoặc b = -3
+) với b = 3 => c = -5 ; a = -2
+) với b= -3 => c = 5 ; a= 2
=>> KL: ...

26 tháng 3 2019

help me