K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

\(\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\Leftrightarrow b-2\sqrt{bc}+c\ge0\Leftrightarrow b+c\ge2\sqrt{bc}\) dấu "="xảy ra khi b=c

\(\left(a+2b\right)\left(a+2c\right)=a^2+2a\left(b+c\right)+4bc\ge a^2+4a\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)

tương tự ta có \(\hept{\begin{cases}\sqrt{\left(b+2c\right)\left(b+2c\right)}\ge b+2\sqrt{bc}\\\sqrt{\left(c+2a\right)\left(a+2b\right)}\ge c+2\sqrt{ab}\end{cases}}\)

dấu "=" xảy ra khi a=b=c

\(\Rightarrow A=\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}\)\(\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

hay \(A\ge\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{3}\right)^2=3\)

dấu "="xảy ra khi \(\hept{\begin{cases}a=b=c\\\sqrt{a}+\sqrt{b}+\sqrt{c}=3\end{cases}\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}}\)

\(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2=\left(2\sqrt{a}+3\sqrt{a}-4\sqrt{a}\right)^2=\left(\sqrt{a}\right)^2=\frac{\sqrt{3}}{3}\)