K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

ai giải giùm tớ dy....giải dung to cko **** nka

3 tháng 8 2017

cho gì vậy bạn

1 tháng 1 2016

Pn vẽ hinh dk tui làm cho

a: BA=BD

=>ΔBAD cân tại B

=>góc BAD=góc BDA

b: góc HAD+góc BDA=90 độ

góc CAD+góc BAD=90 độ

mà góc BAD=góc BDA

nên góc HAD=góc CAD

=>AD là phân giác của góc HAC

c: Xét ΔADH vuông tại H và ΔADK vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔADH=ΔADK

=>AH=AK

28 tháng 7 2023

bài giải nè ! ok 

a: BA=BD

=>ΔBAD cân tại B

=>góc BAD=góc BDA

b: góc HAD+góc BDA=90 độ

góc CAD+góc BAD=90 độ

mà góc BAD=góc BDA

nên góc HAD=góc CAD

=>AD là phân giác của góc HAC

c: Xét ΔADH vuông tại H và ΔADK vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔADH=ΔADK

=>AH=AK

 

a: Xét tứ giác MHKD có

\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)

Do đó: MHKD là hình chữ nhật

b: Xét tứ giác ADKB có

\(\widehat{DKB}+\widehat{DAB}=180^0\)

=>ADKB nội tiếp

=>\(\widehat{AKB}=\widehat{ADB}=45^0\)

Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)

nên ΔHAK vuông cân tại H

=>HA=HK

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{4}=\dfrac{CD}{6}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{CD}{6}=\dfrac{AD+CD}{4+6}=\dfrac{AC}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{4}=\dfrac{1}{2}\\\dfrac{CD}{6}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=2\left(cm\right)\\CD=3\left(cm\right)\end{matrix}\right.\)

Vậy: AD=2cm; CD=3cm

b: \(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)

CH=16^2/20=256/20=12,8cm

AH=12*16/20=192/20=9,6cm

ΔHAC vuông tại H có AD là phân giác

=>DC/AC=DH/AH

=>DC/5=DH/3=HC/8=12,8/8=1,6

=>DC=8cm

c: góc BAD=90 độ-góc CAD

góc BDA=90 độ-góc HAD

mà góc CAD=góc HAD

nên góc BAD=góc BDA

=>BA=BD=BE

=>ΔDAE vuông tại A

ΔDAE vuông tại A có AH vuông góc DE

nên HD*HE=AH^2

ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC=HD*HE

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB\cdot AC=BC\cdot AH\)