K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

3 tháng 1 2017

bài 1

ab+bc+ca=0

=>ab+bc=-ca

ta có (a+b)(b+c)(c+a)/abc

=> (ab+ac+bc+b2)(c+a)/abc

=> (0+b2)(c+a)/abc

=>b2c+b2a/abc

=>b(ab+bc)/abc

=>b(-ac)/abc

=>-abc/abc=-1

31 tháng 7 2019

Em ko bik ạ

1 tháng 8 2019

Bài 1:

a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc

= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc

= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )

= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )

= ab.( a + b ) + c2.( a + b )v + c.( a + b)2

= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]

= ( a + b ).( ab + c2 + ac + bc )

= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]

= ( a + b ).[ a.( b + c ) + c.( b + c ) ]

= ( a + b ).( b + c ).( a + c )

b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )

= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b  ) - ( b + c ) ]

= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )

= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )

= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )

= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )

= ( a + b ).( b + c ).( a - c )

c) ( x2 + x )2 + 2.( x2 + x ) - 3

Đặt x2 + x = a

Khi đó đa thức trở thành:

a2 + 2a - 3

= a2 + 3a - a - 3

= a.( a + 3 ) - ( a + 3 )

= ( a - 1 ).( a - 3 )

\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )

B2

ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0

\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0

\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0

\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0

\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0

\(\Leftrightarrow\) a = b , b = c , a = c

\(\Rightarrow\) a = b = c

11 tháng 4 2017

cong lai nhu phep cong tuy hoi do nhung van ra

22 tháng 7 2020

2, (trích đề thi học sinh giỏi Bến Tre-1993)

\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0 

=> đpcm

*bài này tui làm tắt, không hiểu ib 

Vừa lm xog bị troll chứ, tuk quá 

\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)

\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)

Khử mẫu : 

\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)

Tự xử nốt, lm bài này muốn phát điên mất.