K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE(ΔBAD=ΔBED)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(1)

ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(2)

ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

 

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

Xét ΔADF và ΔEDC có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=CE

19 tháng 12 2023

ối dồi ôi

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(Đpcm)

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE(cmt)

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=EC(hai cạnh tương ứng)

c) Ta có: BA+AK=BK(A nằm giữa B và K)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(cmt)

và AK=EC(cmt)

nên BK=BC

Ta có: ΔADK=ΔEDC(cmt)

nên DK=DC(hai cạnh tương ứng)

Ta có: M là trung điểm của CK(cmt)

nên MK=MC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: CM=KM(cmt)

nên M nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra B,D,M thẳng hàng(đpcm)

16 tháng 2 2021

.

25 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE(ΔBAD=ΔBED)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: IF=IC

=>I nằm trên đường trung trực của CF(2)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc BC

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)