Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)
\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)
\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)
\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)
\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)
\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)
\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)
\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)
\(\Rightarrow p\le2\sqrt{2}\)
Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)
Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)