Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
khong thuc hien phep tinh hay cm rang A chia het cho B biet rang
A=(x+1)(x+3)(x+5)(x+7)+15 va B = x+6
\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(A=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(a=x^2+8x+11\)
\(\Rightarrow A=\left(a-4\right)\left(a+4\right)+15\)
\(\Leftrightarrow A=a^2-16+15\)
\(\Leftrightarrow A=a^2-1\)
Thay a vào A ( :v ) ta có :
\(A=\left(x^2+8x+11\right)^2-1\)
\(A=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(A=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(A=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)
\(A=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)
\(A=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)⋮x+6\left(đpcm\right)\)
Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49
(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49
4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2
Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7
Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7
a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49
=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49
mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49