K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

`a)a<b<=>a+2<b+2`

`b)a<b<=>3a<3b<=>3a-2<3b-2<3b+2`

16 tháng 5 2021

câu b sai

 

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

8 tháng 2 2019

Sử dụng mối liên hệ giữa thứ tự và phép nhân, phép cộng, chúng ta thu được

a) -3a + 4 < -3b + 4;        b) 2 - 3a < 2 - 3b.

a: a>b

=>3a>3b

=>3a+5>3b+5

b: a>b

=>2a>2b

=>2a-3>2b-3>2b-4

22 tháng 1 2018

a) 3a + 5 > 3b + 5;          b) 2a - 3 > 2b - 4

a: a>b

nên 3a>3b

hay 3a+2>3b+2

b: a>b

nên -5a<-5b

=>-5a-3<-5b-3

NV
7 tháng 5 2023

\(a\ge b\Rightarrow3a\ge3b\)

Lại có \(5>2\)

\(\Rightarrow3a+5>3b+2\)

7 tháng 5 2023

Ta có a \(\ge\) b

3a \(\ge\) 3b (nhân cả 2 vế cho 3)

3a + 5 \(\ge\) 3b + 5 (cộng cả 2 vế cho 5) (1)

Ta lại có: 5 > 2 

3b + 5 \(\ge\) 3b + 2 (cộng cả 2 vế cho 3b) (2)

Từ (1) và (2) \(\Rightarrow\) 3a + 5 \(\ge\) 3b + 2

Ta có: 2-3a>2-3b

=> 2-3a+(-2)>2-3b+(-2)      (cộng cả 2 vế cho -2)

=>-3a>-3b       

=> \(-3a.\left(\frac{-1}{3}\right)< -3b\left(\frac{-1}{3}\right)\)(nhân cả 2 vế cho -1/3)

=>a<b

8 tháng 9 2016

Ta luôn có 

\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )

\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)

\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(a-b\right)^2\)

\(=10^2\)

\(=100\)