K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(VT=\frac{a}{a+c}=\frac{kb}{kb+kd}=\frac{kb}{k\left(b+d\right)}=\frac{b}{b+d}=VP\)

=> đpcm

b) \(VT=\frac{a^2+c^2}{b^2+d^2}=\frac{\left(kb\right)^2+\left(kd\right)^2}{b^2+d^2}=\frac{k^2b^2+k^2d^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)

\(VP=\frac{ac}{bd}=\frac{kb\cdot kd}{bd}=\frac{k^2bd}{bd}=k^2\)(2)

Từ (1) và (2) => VT = VP => đpcm

16 tháng 7 2016

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

Vậy ta có đpcm

b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

Vậy ta có đpcm

c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)

Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)

Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)

16 tháng 7 2016

ai nhanh duoc 10 like

16 tháng 7 2016

b)  \(ad=bc\)

\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)

\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

16 tháng 7 2016

ai giai gium minh ma cinh xac nhat minh cho

9 tháng 9 2019

giúp mk với

đợi tý đc ko