K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

5 tháng 8 2019

a2 là a2 hay là a.2

7 tháng 2 2022

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(1\right)\)

\(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(VP=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

Ta thấy: \(VT=VP\)

\(\Rightarrow\left(1\right)\) luôn đúng.

31 tháng 10 2019

a) 3,5(15) = 3,5 + 0,0(15) = 3,5 + 1,5. 0,(01) = 3,5 + 1,5.1/99 = 3,5 + 1/66 = 116/33

b) Ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)

=> (2x - y).3 = 2(x + y)

=> 6x - 3y = 2x + 2y

=> 6x - 2x = 2y + 3y

=> 4x = 5y

=> \(\frac{x}{y}=\frac{5}{4}\)

c) Đặt : \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có:

\(\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2+dk.bk}=\frac{b^2k^2+bdk^2}{d^2k^2+bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2+bd\right)}=\frac{b^2+bd}{d^2+bd}\)

=> Đpcm

7 tháng 12 2015

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

7 tháng 12 2015

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

24 tháng 8 2023

Ta có :

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{b^2}{c}\\d=\dfrac{c^2}{b}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^2}{c}:\dfrac{c^2}{b}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^2}{c}.\dfrac{b}{c^2}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{b^3}{c^3}=\dfrac{8b^3}{8c^3}=\dfrac{a^3}{b^3}=\dfrac{125c^3}{125d^3}\)

\(\Rightarrow\dfrac{a}{d}=\dfrac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\left(dpcm\right)\)

7 tháng 12 2015

đặt a/b=c/d=k=>a=bk;c=dk

=>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2}{d^2}\)  (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)  (2)

từ (1) và (2)=>đpcm

tick nhé