Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)
Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu '=' xảy ra khi ay=bx
\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)
Dấu '=' xảy ra khi a=b=1/2
Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)
một cách khác :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)
Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)
Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)
Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)
Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)
Đẳng thức xảy ra <=> a = b = 1/2
Vậy MinP = 20
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo).
\(A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\left(x\ne2;x\ne-2\right)\)
\(a,A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\)
\(=\left[\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\left[\dfrac{x^2+2x+12-x^2+2x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\dfrac{4x+12}{\left(x-2\right)\left(x+2\right)}:\dfrac{4}{x-2}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{4}\)
\(=\dfrac{x+3}{x+2}\)
\(b,x=-1\Rightarrow A=\dfrac{\left(-1\right)+3}{\left(-1\right)+2}=2\)
\(c,A=\dfrac{x+3}{x+2}=\dfrac{x+2+1}{x+2}=1+\dfrac{1}{x+2}\)
\(A\in Z\Leftrightarrow x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{-1;-3\right\}\) (thỏa mãn điều kiện)
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$
$\Rightarrow a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Mà $a+b+c=9$ nên $a=b=c=3$.
Khi đó:
$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$
$=(-1)+1+(-1)=-1$
\(a^4+b^4\\ =\left(a^4+2a^2b^2+b^4\right)-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2\\ =\left[\left(a^2+2ab+b^2\right)-2ab\right]^2-2a^2b^2\\ =\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2\\ =\left(a+b\right)^4-4ab\left(a+b\right)^2+4a^2b^2-2a^2b^2\\ =\left(-4\right)^4-4\left(-12\right)\left(-4\right)^2+2a^2b^2\\ =256+768+2\left(-12\right)^2\\ =256+768+288\\ =1312\)