K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

mk giải câu a thui nha

để \(\frac{6n-1}{3n+2}\)là số nguyên thì:

    (6n-1) sẽ phải chia hết cho(3n+2)

mà (3n+2) chja hết cho (3n+2)

=> 2(3n+2) cx sẽ chia hết cho (3n+2)

<=> (6n+4) chia hết cho (3n+2)

mà (6n-1) chia hết cho (3n+2)

=> [(6n+4)-(6n-1)] chja hết cho (3n+2)

      (6n+4-6n+1) chja hết cho 3n+2

           5 chia hết cho3n+2

=> 3n+2 \(\in\){1,5,-1,-5}

ta có bảng

3n+2

1   

-1-5

3n 

371-3
n1  

-1

vậy....
 

22 tháng 3 2016

bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

28 tháng 3 2015

Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2

=> Đẻ  Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)

ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"

Vì n thuộc Z nên n= -1

 

19 tháng 3 2016

thật ra ko cần kẻ bảng cũng được. tự nhẩm thôi

18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)