K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

11 tháng 2 2019

Hỏi đáp Toán

bạn xài cái này gõ công thức ra đi

11 tháng 2 2019

giúp man luôn nè : \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2+2}\)

22 tháng 11 2017

giup minh voi cac ban

7 tháng 2 2021

Ta có a + b = 3

=> (a + b)2 = 9

=> a2 + 2ab + b2 = 9

=> a2 + b2 = 5 (ab = 2)

Khi a2 + b2 = 5 => a2 - 2ab + b2 = 1

=> (a - b)2 = 1

=> a - b = \(\pm1\)

Đặt A \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{\left(a.b\right)^3}=\frac{\left(b-a\right)\left(b^2+ab+a^2\right)}{\left(ab\right)^3}=-\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(ab\right)^3}\)

Với  a - b = 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{1.\left(5+2\right)}{2^3}=-\frac{7}{8}\)

Với a - b = - 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{\left(-1\right).\left(5+2\right)}{2^3}=\frac{7}{8}\)

7 tháng 2 2021

Ta có: \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\ab=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2+2ab+b^2=9\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=5\\ab=2\end{cases}}\)

Khi đó: \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{a^3b^3}=\frac{\left(b-a\right)\left(a^2+ab+b^2\right)}{8}=\frac{7\left(b-a\right)}{8}\)

Ta có: \(a+b=3\Rightarrow a=3-b\) thay vào: \(\left(3-b\right)b=2\)

\(\Leftrightarrow b^2-3b+2=0\Leftrightarrow\left(b-1\right)\left(b-2\right)=0\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=2\\b=2\Rightarrow a=1\end{cases}}\)

Nếu \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow}\frac{1}{a^3}-\frac{1}{b^3}=-\frac{7}{8}\)

Nếu \(\hept{\begin{cases}a=1\\b=2\end{cases}}\Rightarrow\frac{1}{a^3}-\frac{1}{b^3}=\frac{7}{8}\)

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

15 tháng 7 2016

\(A=\left(a-b\right)^2=\left(a+b\right)^2-4ab=4-\left(4.-1\right)=4+4=8\)

Vậy A=8

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)