K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}2012a​=2013b​=2014c​=2012−2013a−b​=2013−2014b−c​=2014−2012c−a​

\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}⇒−1a−b​=−1b−c​=2c−a​

\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2⇒(−1a−b​)(−1b−c​)=(2c−a​)2

hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}(a−b)(b−c)=4(c−a)2​

\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(a−b)(b−c)=(c−a)2

6 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}

\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}

\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2

hay \left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}

\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2

6 tháng 1 2016

Em mới lớp 6 thui! Anh thông cảm em ko giải đc!

6 tháng 1 2016

minh cung the

 

11 tháng 3 2023

Đặt: \(\dfrac{a}{2012}=\dfrac{b}{2013}=\dfrac{c}{2014}=k\)

\(\rightarrow a=2012k,b=2013k,c=2014k\)

Vế trái: \(4.\left(2012k-2013k\right)\left(2013k-2014k\right)=4.\left(-1k\right).\left(-1k\right)=4k^2\)

Vế phải: \(\left(2014k-2012k\right)^2=\left(2k\right)^2=4k^2\)

\(\rightarrow\) Vế trái = vế phải = \(4k^2\)

22 tháng 8 2016

chán ghê hk ai giúp hết

\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)

8 tháng 2 2022

s = e>2025

17 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

27 tháng 8 2020

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)

A = 4( a - b )( b - c ) - ( c - a )2

= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2

= 4.( -k ).( -k ) - ( 2k )2

= 4k2 - 4k2 = 0

14 tháng 1

Bài 3. 

\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)

Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)

Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)

Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).

Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)

\(\Rightarrow c=\pm\dfrac{1}{6}\).

Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)

Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 7

Lời giải:

Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$

$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:

$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$

$=4(-k)(-k)(2k)=8k^3$

23 tháng 8 2016

Ta có \(\frac{a}{2012}\)\(\frac{b}{2013}\)\(\frac{c}{2014}\)= b - a = c - b = \(\frac{c\:-a}{2}\)

Từ đó ta có A= 4(a-b)(b-c)-(c-a)2 = 4(-\(\frac{c\:-a}{2}\))(-\(\frac{c\:-a}{2}\)) - (c - a)= )  (c - a)- (c - a)= 0