Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
kiến thức
hay dấu hiệu chia hết cho 7
là xong thui bạn
Ta có:
\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)
=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)
Lấy
\(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)
<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)
Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)
=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)
và \(0< \frac{2020}{4039}< 1\)
=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)
=> 0 < a < 1
=> a không phải là một số nguyên.
\(A=1+2+2^2+...+2^{2019}+2^{2020}\)
\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2018}+2^{2019}+2^{2020}\right)\)
\(A=3+2^2\left(1+2+2^2\right)+...+2^{2018}\left(1+2+2^2\right)\)
\(A=3+2^2.7+....+2^{2018}.7\)
\(A=3+7\left(2^2+....+2^{2018}\right)\)
Vì 3 ko chia hết cho 7
=> A ko chia hết cho 7
=> A dư 3