Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: a < b
=> 2019a < 2019b
=> ab + 2019a < ab+ 2019b
=> a(b+2019) < b(a+2019)
=> a/b < (a+2019)/(b+2019)
TH2: a = b
=> a/b = (a+2019)/(b+2019)
TH3: a > b
=> ab + 2019a > ab+ 2019b
=> a(b+2019) > b(a+2019)
=> a/b > (a+2019)/(b+2019)
đúng ko moonshine
đầu tiên: a < b
=> 2019a < 2019b
=> ab + 2019a < ab+ 2019b
=> a(b+2019) < b(a+2019)
=> a/b < (a+2019)/(b+2019)
2: a = b
=> a/b = (a+2019)/(b+2019)
3: a > b
=> ab + 2019a > ab+ 2019b
=> a(b+2019) > b(a+2019)
=> a/b > (a+2019)/(b+2019)
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
Câu 1: Cho A.= \(\frac{7^{2018}+1}{7^{2019}+1}\)Và B=\(\frac{7^{2019}+1}{7^{2019}+1}\)
So sánh A và B
\(A=\frac{7^{2018}+1}{7^{2019}+1}\)
\(\Rightarrow7A=\frac{7^{2019}+7}{7^{2019}+1}=1+\frac{6}{7^{2019}+1}\)
\(B=\frac{7^{2019}+1}{7^{2020}+1}\)
\(\Rightarrow7B=\frac{7^{2020}+7}{7^{2020}+1}\)
\(\Rightarrow7B=1+\frac{6}{7^{2020}+1}\)
Vì 7 ^ 2019 < 7 ^ 2020 => 7 ^ 2019 + 1 < 7 ^ 2020 + 1
=> 6 / ( 7 ^ 2019 + 1 ) > 6 / ( 7 ^ 2020 + 1 )
=> 1 + 6 / ( 7 ^ 2019 + 1 ) > 1 + 6 / ( 7 ^ 2020 + 1 )
=> 7A > 7B
Vì A , B > 0
Nên A > B
Vì \(7^{2018}< 7^{2019}\)nên \(7^{2018}+1< 7^{2019}+1\)
\(\Rightarrow\frac{7^{2018}+1}{7^{2019}+1}< \frac{7^{2019}+1}{7^{2019}+1}\)
Hay A < B
Chúc bạn học tốt ! Nguyễn Thi An Na
Vì dụ 5: Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\) , ta đi so sánh giữa 2 số a (b+1) và b(a+1) .
Xét hiệu: a(b+1) - b(a+1) = ab+ a - (ab +b) = a-b. Ta có 3 trường hợp, với điều kiện b >0:
Trường hợp 1: Nếu a-b = 0 \(\Leftrightarrow\)a = b thì :
a(b+1) - b(a+1) = 0\(\Leftrightarrow\)a(b+1) = b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)= \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)=\(\frac{a+1}{b+1}\).
Trường hợp 2: Nếu a - b< 0 \(\Leftrightarrow\)a < b thì:
a(b+1) - b(a+1)< 0\(\Leftrightarrow\)a(b+1) < b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)< \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\)\(\frac{a}{b}\)< \(\frac{a+1}{b+1}\).
Trường hợp 3: Nếu a-b> 0 \(\Leftrightarrow\) a > b thì:
a(b+1) - b(a+1) > 0 \(\Leftrightarrow\)a(b+1) > b(a+1)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(b+1\right)}\)>\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)>\(\frac{a+1}{b+1}\).
Ví dụ 6: Bg: Gọi khối lượng của niken, kẽm và đồng theo thứ tự m1, m2, m3. Từ giả thiết ta có: m1+m2+m3 = 150 kg.
\(\frac{m_1}{3}\) =\(\frac{m_2}{4}=\frac{m_3}{13}\Rightarrow\frac{m_1}{3}=\frac{m_2}{4}=\frac{m_3}{13}=\)\(\frac{m_1+m_2+m_3}{3+4+13}=\frac{150}{20}=7,5\)
Từ đó, suy ra m1 = 3.7,5 = 22,5kg, m2 = 4.7,5 = 30 kg và m3 = 13.7,5 = 97,5kg .
1.a) Ta có:
\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)
Vậy \(-\frac{213}{300}>\frac{18}{-25}\)
b) Ta có:
\(0,75>0>-\frac{3}{4}\)
Vậy \(0,75>-\frac{3}{4}\)
2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)
Đây là kiến thức cơ bản !
Xét hiệu:
\(H=\frac{a}{b}-\frac{a+2016}{b+2016}=\frac{a\cdot\left(b+2016\right)-\left(a+2016\right)\cdot b}{b\left(b+2016\right)}=\frac{2016\cdot\left(a-b\right)}{b\left(b+2016\right)}.\)
- Nếu b<-2016 và a>b thì H>0; a<b thì H<0
- -2016<b<0 và a>b thì H<0; a<b thì H>0
- Nếu b>0 và a>b thì H>0; a<b thì H<0
tùy H>0 hay H<0 mà ta biết được kq của sự so sánh.
Nếu
a < b
=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a > b
=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Nếu a = b
=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Xét tích \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).
Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)
\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\)
Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)
Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
#)Giải :
Ta có : \(\frac{a+2019}{b+2019}=\frac{a}{b+2019}+\frac{2019}{b+2019}< \frac{a}{b}\)
\(\Rightarrow\frac{a+2019}{b+2019}< \frac{a}{b}\)
#)Chi tiết hơn nhé :
\(\frac{a}{b+2019}< \frac{a}{b}\)
\(\frac{2019}{b+2019}< \frac{a}{b}\)
\(\Rightarrow\frac{a}{b+2019}+\frac{2019}{b+2019}=\frac{a+2019}{b+2019}< \frac{a}{b}\)