Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\ge0\\\left(3x-2y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2\le1\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) đúng với mọi x,y,z thuộc R =>đúng với mọi x,y,z thuộcZ
có
điều kiện cần thỏa mãn (2)
\(\left\{{}\begin{matrix}\left|3x-2y\right|\le1\\\left|y+z\right|\le1\\\left|z-x\right|\le1\end{matrix}\right.\) \(\begin{matrix}\left(a\right)\\\left(b\right)\\\left(c\right)\end{matrix}\)
\(\left(b\right)+\left(c\right)\Leftrightarrow\left|y+z\right|+\left|z-x\right|=\left|y+z\right|+\left|x-z\right|\ge\left|y+z+x-z\right|=\left|y+x\right|\) (d)
\(\left|3x-2y\right|+\left|2y+2x\right|\ge\left|3x-2y+2y+2x\right|=\left|5x\right|\)
cần : \(\left|5x\right|\le2\Leftrightarrow x=\left\{0;\pm1\right\}\)
x=0 từ (a) => y =0 ; từ (b) (c)=z =0 ; (x;y;z) =(0;0;0)
x=1 từ (a) =y={1;2}
với y=1 từ (b) => z=-1 ; (x;y;z) =(1;1;-1)
với y=2 từ (b) => z =-2 từ (c) $|-2-1| \ne 0$ loại
x=-1 từ (a) =y={-1;-2}
với y=-1 từ (b) => z= 1 ; (x;y;z) =(-1;-1;1)
với y=-2 từ (b) => z = 2 từ (c) $| 2+1| \ne 0$ loại
kết luận
(x;y;z) =(0;0;0);(1;1;1); (-1;-1;1)
\(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4\ge0\\\left(3x-2y\right)^2\ge0\end{cases}}\Rightarrow\left|x^2+y^2+z^2-1\right|+\left(3y-4z\right)^4+\left(3x-2y\right)^2\ge0\)
dấu = xảy ra khi \(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4=0\\\left(3x-2y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\3y=4z\\3x-2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\y=\frac{4z}{3}\\x=\frac{2y}{3}\end{cases}}\)
Vậy ...
p/s bài này chắc chỉ có dạng chung thôi bn :)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z