K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

Giả sử p là số nguyên tố. Từ a^2.b^2=p(a^2+b^2)=>a^2+b^2chia hết cho p hoặc achia hết cho p và b chia hết cho p (1)

=> a^2.b^2 chia hết cho p^2 => p(a^2+b^2)chia hết cho p2 =>a2+b2 chia hết cho p (2). Từ (1) và (2) =>a chia hết cho p và b chia hết cho p.

Từ a\(\ge\)p , b\(\ge\)p => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}=>\frac{1}{p}\le\frac{2}{p^2}=>p\le2\left(3\right)\)

Từ a> 2, b > 2 => \(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)

Từ (3), (4) => mâu thuẫn  => p là hợp số.

đúng mình cái

5 tháng 5 2015

thiếu đề : phải là 1/p = 1/a^2 +1/b^2 thì mình giải dc

6 tháng 8 2016

Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)

Lại có: A > \(\sqrt{2}\)

=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên

 

7 tháng 8 2016

đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi

ta có:

\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)

lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)

\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN

26 tháng 2 2022

Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)

Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)

Nên:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)

\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)