Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}>\sqrt{1}=1\)
lại có: \(\sqrt{2+\sqrt{2}+\sqrt{2}+....+\sqrt{2}}< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+2}}=2}\)\(\Rightarrow1< \sqrt{2+\sqrt{2+\sqrt{2+....+\sqrt{2}}}}< 2\)
\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ko phải là STN
Nhìn vào bài dễ thấy, \(A>1\)hay ta chứng minh \(A< 2\)
Vậy: \(\sqrt{2+\sqrt{2}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=\sqrt{4}=2\)
Nên:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}< \sqrt{2+2}=\sqrt{4}=2\)
\(\Rightarrow1< A< 2\)hay \(A\neℕ\left(đpcm\right)\)
Ta có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(>\sqrt{1}=1\)
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)\(< \sqrt{2+\sqrt{2+\sqrt{2+...\sqrt{4}}}}=2\)
Vậy A không phải số tự nhiên.
Nếu đúng cho nhé.
a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)
\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)
Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ
b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)
\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)
=> \(1< B< 2\) B không là số tự nhiên
c) câu này có ng làm r ib mk gửi link
à chỗ câu b) mình nhầm tí nhé
\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)
Sửa dấu "=" thành ">" hộ mình
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)
1. Đặt \(\sqrt{4n+1}=a\) \(\left(a\in N\right)\)
\(\Leftrightarrow4n+1=a^2\) (1)
=> \(a^2\) là số lẻ => a là số lẻ
=> \(a=2k+1\) \(\left(k\in N\right)\)
+ Thay a = 2k + 1 \(\left(k\in N\right)\) và (1) ta có :
\(4n+1=\left(2k+1\right)^2\)
\(\Leftrightarrow4n=4k^2+4k\Leftrightarrow n=k\left(k+1\right)\)
Vậy với \(n=k\left(k+1\right)\) \(\left(k\in N\right)\) thì \(\sqrt{4n+1}\) là số tự nhiên
2. \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ( 2015 dấu căn )
+ Dễ thấy : \(A>1\) (1)
+ Ta có : \(\sqrt{2}< \sqrt{4}=2\)
\(\Rightarrow\sqrt{2+\sqrt{2}}< \sqrt{2+2}=2\)
\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2}}}< \sqrt{2+2}=2\)
Tương tự như vậy ta có :
\(A< \sqrt{2+2}=2\) (2)
+ Từ (1) và (2) => đpcm
Ta có: A < \(\sqrt{2+\sqrt{2+...+\sqrt{3}}}\) < \(\sqrt{3}\)
Lại có: A > \(\sqrt{2}\)
=> \(\sqrt{2}< A< \sqrt{3}\) => A ko phải số tự nhiên
đang cộng tất cả căn 2 sao tự nhiên lại cộng căn 3 vào làm gì bạn ơi