K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bạn xem lại đề.

Biểu thức không có GTNN nhé.

1 tháng 9 2020

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a}{1+b}+\frac{4}{9}.a\left(1+b\right)\ge2\sqrt{\frac{a.4.a.\left(1+b\right)}{\left(1+b\right)9}}=2\sqrt{\frac{4a^2}{3^2}}=\frac{4a}{3}\)

\(\frac{b}{1+a}+\frac{4}{9}.b\left(1+a\right)\ge2\sqrt{\frac{b.4.b.\left(1+a\right)}{\left(1+a\right)9}}=2\sqrt{\frac{2^2b^2}{3^2}}=\frac{4b}{3}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{4}{9}.a\left(1+b\right)+\frac{4}{9}.b\left(1+a\right)\ge\frac{4a}{3}+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{4a}{3}-\frac{4}{9}\left(a+ab\right)-\frac{4}{9}\left(b+ab\right)+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{8a}{9}+\frac{8b}{9}-\frac{4}{9}ab-\frac{4}{9}ab\)

\(< =>S\ge\frac{1}{a+b}+\frac{8}{9}\left(a+b\right)-\frac{8}{9}ab=\left(\frac{1}{a+b}+a+b\right)-\frac{a+b+8ab}{9}\)

\(< =>S\ge2-\frac{a+b+8ab}{9}\)

Do \(4ab\le\left(a+b\right)^2\le1< =>a+b+8ab\le3\)

Khi đó ta được : \(S\ge2-\frac{3}{9}=2-\frac{1}{3}=\frac{5}{3}\).Đẳng thức xảy ra \(< =>a=b=\frac{1}{2}\)

Vậy GTNN của \(S=\frac{5}{3}\)đạt được khi \(a=b=\frac{1}{2}\)

22 tháng 2 2020

\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)

\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

6 tháng 7 2020

Ta dễ có:

\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)

\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)

\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)

\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)

Đẳng thức xảy ra tại \(a=b=1\)

hmm check hộ mình nhá

13 tháng 3 2021

\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)

\(P=\frac{1}{a^2+b^2+1}+\frac{\frac{1}{9}}{2ab}+\frac{4}{9ab}\)

\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{a^2+b^2+1+2ab}+\frac{4}{9ab}\)

\(\ge\frac{\left(1+\frac{3}{4}\right)^2}{\left(a+b\right)^2+1}+\frac{16}{9\left(a+b\right)^2}\)

\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{1+1}+\frac{16}{9}=\frac{8}{3}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

24 tháng 5 2015

\(P=a+a+\frac{1}{a^2}+b+b+\frac{1}{b^2}-\left(a+b\right)\)

Áp dụng bất đẳng thức cối 3 số có:\(a+a+\frac{1}{a^2}\ge3\sqrt[3]{\frac{a.a.1}{a^2}}=3\Rightarrow P\ge3+3-1=5\)

nên min P=5 khi a=b=1/2

2 tháng 8 2020

Ta có : \(a+\frac{1}{b}\le1\Leftrightarrow\frac{ab+1}{b}\le1\Rightarrow ab+1\le b\)  ( vì a ; b > 0 ) 

Mặt khác : \(2\sqrt{ab}\le ab+1\) ( BĐT Cô - si ) 

Suy ra : \(b\ge2\sqrt{ab}\Leftrightarrow\sqrt{b}\ge2\sqrt{a}\Leftrightarrow\frac{b}{a}\ge4\)

Đặt b/a = t ( t >= 4 ) , ta có : \(A=\frac{1}{t}+t=\frac{1}{t}+\frac{t}{16}+\frac{15}{16}t\)

Đến đây bn làm nốt 

NV
22 tháng 4 2020

\(P=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(P\ge2\sqrt{\frac{a^2}{16a^2}}+2\sqrt{\frac{b^2}{16b^2}}+\frac{15}{8ab}\ge1+\frac{15}{4\left(a+b\right)^2}\ge1+\frac{15}{4}=\frac{19}{4}\)

\(P_{min}=\frac{19}{4}\) khi \(a=b=\frac{1}{2}\)

19 tháng 12 2015

Ta có \(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

\(A=\left(\frac{a}{2}+\frac{a}{2}+\frac{1}{16a^2}\right)+\left(\frac{b}{2}+\frac{b}{2}+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

     \(A\ge3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{1}{16a^2}}+3\sqrt[3]{\frac{b}{2}.\frac{b}{2}.\frac{1}{16b^2}}+\frac{15}{16}.\frac{2}{ab}\ge\frac{3}{4}+\frac{3}{4}+\frac{15}{16}.\frac{2}{\frac{1}{4}}=9\)

Min A = 9 khi a =b = 1/2

19 tháng 12 2015

Mình chưa học đến dạng này 

3 tháng 2 2021

Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)

CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)

=> P \(\ge a+b-2ab=4ab-2ab=2ab\)

Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)

=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)

<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)

=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b = 1/2

Vậy MinP = 1/2 <=> a = b= 1/2

3 tháng 2 2021

Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)

Mà \(a+b>0\Rightarrow a+b\ge1\)

Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = 1/2