Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Mà \(a^2;b^2;c^2\ge0\forall a;b;c\) nên điều này xảy ra \(\Leftrightarrow a=b=c=0\)
\(\Rightarrow M=2018^{2014}+2018^{2014}-2018^{2014}=2018^{2014}\)
M = \(\dfrac{2018a}{ab+2018a+2018}+\dfrac{b}{bc+b+2018}+\dfrac{c}{ac+c+1}\)
M = \(\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
M = \(\dfrac{a^2bc}{ab\left(ac+c+1\right)}+\dfrac{b}{b\left(ac+c+1\right)}+\dfrac{c}{ac+c+1}\)
M= \(\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
M = \(\dfrac{ac+c+1}{ac+c+1}\)
M = 1
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)
\(\Rightarrow a=b=c=0\)
Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)
Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)
\(a^2+b^2+c^2=ab+bc+ac\)
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)
\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)
\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)
\(=1+\left(-1\right)+0\)
\(=0\)
Vậy......
P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha
\(\left(a+b+c\right)\left(ab+ac+bc\right)=\left(a+b+c\right)\left(ab+ac+bc+c^2-c^2\right)\)
\(=\left(a+b+c\right)\left(\left(a+c\right)\left(b+c\right)-c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2\left(a+b\right)+c\left(a+c\right)\left(b+c\right)-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2a-c^2b+abc+c^2a+c^2b+c^3-c^3\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc=\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018=2018\)
\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Ta có:
\(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)
\(A=\left(b^2c+abc\right)\left(c^2a+abc\right)\left(a^2b+abc\right)\)
\(A=bc\left(a+b\right)ac\left(b+c\right)ab\left(a+c\right)\)
\(A=\left(abc\right)^2\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=2018^2.0=0\)
\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)
\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)
\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lại có:
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)
\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)
\(\Rightarrow P=0\)