K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Áp dụng bđt Cauchy:

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự:

\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)

8 tháng 11 2019

Dựa vào quy luật của các số trong hình A và B , hãy điền số thích hợp vào chỗ chấm trong hình C

9 tháng 11 2019

BĐT \(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Rồi tự giải nốt đi:) Ko thì để t lục lại bài hồi sáng t giải ngoài giấy:v (tại vì hồi sáng giải ngon lành bằng bunyakovski mà giờ làm ko ra:((

13 tháng 8 2017

Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)

Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)

=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)

=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)

=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)

Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)

Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi a=3,b=2,c=1

15 tháng 2 2019

theo đề  \(-1\le a\le2\Leftrightarrow\left(a-2\right)\left(a+1\right)\le0\Leftrightarrow a^2-a-2\le0\)

tương tự

\(b^2-b-2\le0\)

\(c^2-c-2\le0\)

nên \(a^2-a-2+c^2-c-2+b^2-b-2\le0\)

\(a^2+c^2+b^2-6\le0\Leftrightarrow a^2+c^2+b^2\le6\)

Ta có \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Leftrightarrow\left(a^2-2a+1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^4-a^3+1\ge a\)

\(\Leftrightarrow a^4-a^3+ab+2\ge a+ab+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự \(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)

             \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(=\sqrt{3\left(\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=1

19 tháng 3 2020

Đoán xem

4 tháng 9 2016

Bạn có thể tham khảo cách này

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)

BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)

ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)

Tương tự rồi cộng lại

\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

4 tháng 9 2016

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)

Khi đó ta có BĐT cần chứng minh tương đương với:

\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)

Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)

Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)

\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)

\(\ge3\left(x^2y+y^2z+z^2x\right)\)

\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)

Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)

\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)

Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)