K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Áp dụng bđt Cauchy:

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự:

\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)

NV
10 tháng 6 2019

\(N=\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)

Ta chứng minh \(\frac{3+a^2}{3-a}\ge2a\) với mọi \(0< a< 3\), thật vậy:

\(\Leftrightarrow3+a^2-2a\left(3-a\right)\ge0\)

\(\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có: \(\frac{3+b^2}{3-b}\ge2b\); \(\frac{3+c^2}{3-c}\ge2c\)

Cộng vế với vế: \(\Leftrightarrow N\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
15 tháng 6 2019

Đề bài sai nếu \(x;y\in R\)

Cho \(y=4;x=-0,000001\) thì vế trái ra 1 số âm có trị tuyệt đối cực to

Đề đúng phải là \(x;y\in R^+\)

Làm trong trường hợp đề đã chỉnh lại:

\(VT=x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)

\(VT\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{1}{2}.3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

13 tháng 8 2017

Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)

Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)

=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)

=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)

=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)

Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)

Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi a=3,b=2,c=1

30 tháng 6 2023

Từ giả thiết ta có: `1/a+1/b+1/c=0=>ab+bc+ca=0`

Ta có:
`sqrt(a+c)+sqrt(b+c)=\sqrt(a+b)`

`=>(sqrt(a+c)+sqrt(b+c))^2=(sqrt(a+b))^2`

`<=>2c+2\sqrt((a+c)(b+c))=0`

`<=>2c+2\sqrt(ab+bc+ca+c^2)=0`

`<=>2\sqrt(c^2)+2c=0`

`<=>|c|+c=0(**)`

- Nếu `c>=0` thì `(**)<=>2c=0<=>c=0(` Mâu thuẫn với điều kiện toán học do không tồn tại `1/c=1/0)`

Vậy `c<0` do đó `(**)<=>0=0(` Luôn đúng `)`

Vậy ta có `đfcm`

30 tháng 6 2023

Một cách đánh giá khác, bạn có thể tham khảo thêm. Đây là cách khác thôi chứ trên bài mình làm đầy đủ rồi nhé.

-------------

Từ giả thiết `a;b>0` và `1/a+1/b+1/c=0` ta suy ra `c<0`

( Vì nếu  `c=0` thì `1/a+1/b+1/c` chưa được xác định do mẫu bằng `0` và `a,b,c>0` thì `1/a;1/b;1/c>0` nên dẫn đến `1/a+1/b+1/c>0` mâu thuẫn do vậy `c<0`)

-----

Bản chất nó vẫn là 1 nếu bạn ghi cái này lên trên đầu thì không phải xét `c>=0` nữa nhé.  Không thì bạn cứ làm theo bài mình trên là đúng rồi, đây chỉ nói thêm thôi.