Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 3 phải chia hết cho n + 5
=> n + 5 sẽ thuộc Ư(3)
Mà 3 = 1.3 = -1.(-3)
Ta có bảng:
n + 5 | 1 | 3 | -1 | -3 |
n | -4 | -2 | -6 | -8 |
Vậy n = -4 hoặc -2 hoặc -6 hoặc -8.
Tik nhá
ta có:
a) phân tích : n + 5 = (n+2) +3
vì n+5 chia hết cho n+2 nên suy ra (n+2) +3 chia hết cho n+2.
do n+2 chia hết cho n+2 nên 3 phải chia hết cho n+2. vậy n+2 là ước của 3
Ư(3)={-3,-1,1,3} nên n+2=-3=>n=-5; n+2=-1=>n=-3; n+2=1=>n=-1;n+2=3=>n=1
b) tương tự: 3n+6=3(n-1) +9 chia hết cho n-1
dễ thấy 3(n-1) chia hết cho n-1. nên 9 phải chia hết cho n-1
vậy n-1 là ước của 9
Ư(9)={-9,-3,-1,1,3,9}
n-1=-9=>n=-8.... tương tự bạn tìm được các kết quả n=-2;0;2;4;10
chúc bạn làm được bài
Ta có: \(A=\dfrac{4}{n-3}\left(n\in Z\right)\)
a) Để \(A\) là phân số thì \(n-3\ne0\Leftrightarrow n\ne3\)
b) Để \(A\in Z\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{4;3;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;3;5;1;7;-1\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
a) ( 6x - 84) : 2 - 72 = 201
( 6x - 84) : 2=201+72
( 6x - 84) : 2=273
6x - 84=273x2
6x - 84=546
6x=546+84
6x=630
x=630:6
x=105
b) ( 3x - 34 ) . 63 = 65
3x - 34=65:63
3x - 34=62
3x-81=36
3x=36+81
3x=117
x=117:3
x=39
a) ( 6x - 84) : 2 - 72 = 201
=> (6x - 84) : 2 = 273
=> 6x - 84 = 546
=> 6x = 630
=> x = 105
b) ( 3x - 34 ) . 63 = 65
=> 3x - 34 = 65 : 63 = 62 = 36
=> 3x = 36 + 34 = 36 + 81 = 117
=> x = 39
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
- \(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)
- \(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)
- \(n+3=2\Rightarrow x=2-3=-1\in Z\)
- \(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)
Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
a, \(\frac{n+5}{n-2}\)=\(\frac{n-2}{n-2}\)+\(\frac{7}{n-2}\)=1+\(\frac{7}{n-2}\)=>7 chia hết cho n-2 => n-2 thuộc ước của 7 = (-1;-7;1;7) . Ta có :
n-2=-7=> n=-5 ; n-2=-1=>n=1;n-2=1=>n=3;n-2=7=>n=9.
vậy n=-5;-1;3;9 thì n+5 chia hết cho n-2
c, \(\frac{n^2+3}{n-1}\)=\(\frac{n^2-1}{n-1}\)+\(\frac{4}{n-1}\)=>4 chia hết cho n-1 .
Đến đây giải tương tự phần a , chúc bạn hóc tốt.
\(A=\frac{3}{n+5}\left(n\inℤ\right)\)
A là số nguyên \(\Leftrightarrow\frac{3}{n+5}\)là số nguyên
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Leftrightarrow n+5\inƯ(3)\in\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
Vì \(n\inℤ\Leftrightarrow n\in\left\{-8;-6;-4;-2\right\}\)
Vậy \(n\in\left\{-8;-6;-4;-2\right\}\)thì A là số nguyên.