Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)
=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))
=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))
=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)
Ta có :\(\frac{a+2020}{a-2020}=\frac{b+2021}{b-2021}\)
=> \(\frac{a+2020}{a-2020}-1=\frac{b+2021}{b-2021}-1\)
=> \(\frac{4040}{a-2020}=\frac{4042}{b-2021}\)
=> \(1:\frac{4040}{a-2020}=1:\frac{4042}{b-2021}\)
=> \(\frac{a-2020}{4040}=\frac{b-2021}{4042}\)
=> \(\frac{a-2020}{4040}+2=\frac{b-2021}{4042}+2\)
=> \(\frac{a}{4040}=\frac{b}{4042}\)
=> \(\frac{a}{2020}.\frac{1}{2}=\frac{b}{2021}.\frac{1}{2}\)
=> \(\frac{a}{2020}=\frac{b}{2021}\)(đpcm)