K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

a: \(A=\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)

\(=31\left(1+...+5^{57}\right)⋮31\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a.

$A=1+5+5^2+5^3+...+5^{59}$

$= (1+5+5^2)+(5^3+5^4+5^5)+....+(5^{57}+5^{58}+5^{59})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{57}(1+5+5^2)$

$=31+5^3,31+,,,,,+5^{57}.31$

$=31(1+5^3+...+5^{57})\vdots 31$ (đpcm)

b.

$A=1+5+5^2+...+5^{59}$

$5A=5+5^2+5^3+...+5^{60}$

$\Rightarrow 4A=5A-A=5^{60}-1< 5^{60}$

$\Rightarrow A< \frac{5^{60}}{4}=B$