Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
lẻ 1 số chẵn, 3 số chẵn
Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$
Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn
$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.
$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$
Vậy $(x+y)(y+z)(x+z)\vdots 2$
$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$
Mà $x+y+z\vdots 6$
$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.
Ta có: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(\left(x-1\right)x\left(x+1\right)⋮3\)
hay \(x^3-x⋮3\)
Tương tự \(y^3-y⋮3\);\(z^3-z⋮3\)
\(\Rightarrow x^3+y^3+z^3-\left(x+y+z\right)⋮3\)
Mà \(\left(x+y+z\right)⋮3\left(gt\right)\Rightarrow a^3+b^3+c^3⋮3\left(đpcm\right)\)
x^3+y^3 = 2.(z^3+t^3)
<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3
Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )
Tương tự : y^3-y , z^3-z và t^3-t đều chia hết cho 3
=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3
Mà x^3+y^3+z^3+t^3 chia hết cho 3
=> x+y+z+t chia hết cho 3
Tk mk nha
(x+y)(y+z)(z+x)-2xyz
⇒(x+y+z)-z(x+y+z)-x(x+y+z)-y-2xyz
⇒(x+y+z)nhân-(x+y+z)-2xyz
⇒6(-6)-2xyz⋮6
⇒(x+y)(y+z)(z+x)-2xyz⋮6
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.