Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.
Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Ta có:\(M=\left(x+y\right)\left(x+z\right)\left(y+z\right)-2xyz\)
\(=\left(x^2+xz+xy+yz\right)\left(y+z\right)-2xyz\)
\(=x^2y+x^2z+xyz+xz^2+xy^2+xyz+y^2z+yz^2-2xyz\)
\(=x^2y+x^2z+xz^2+xy^2+y^2z+yz^2\)
\(=\left(x^2y+xy^2+xyz\right)+\left(y^2z+yz^2+xyz\right)+\left(z^2x+zx^2+xyz\right)-3xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)-3xyz\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)-3xyz\)
Vì \(\left(x+y+z\right)\left(xy+yz+xz\right)⋮6\)
Giả sử:Trg 3 số x,y,z không tồn tại số nào chẵn
=> x+y+z lẻ mà 1 số lẻ không chia hết cho 6 nên điều g/s sai
=> tồn tại ít nất 1 trong 3 số x,y,z chẵn
Giả sử: x chẵn
=> x chia hết cho 2 => 3xyz chia hết cho 6
=> đpcm
Ta có
x2-yz=a
y2-zx=b
z2-xy=c
=>x3-xyz=ax
y3-xyz=by
z3-xyz=cz
=> x3+y3+z3-3xyz=ax+by+cz
Lại có
x3+y3+z3-3xyz
=(x+y)3-3x2y-3xy2+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)
ak mình nhầm tẹo srr nha, đến chỗ
(x+y+z)(x2+y2+z2-xy-yz-zx)
Vì x2-yz=a, y2-zx=b, z2- xy=c
=>x2+y2+z2-xy-yz-zx=a+b+c
=>ax+by+cz=(x+y+z)(a+b+c)
=> DPCM
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm