Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
Câu 1 :
a ) \(\sqrt{0,36.100}=\sqrt{36}=6\)
b ) \(\sqrt[3]{-0,008}=\sqrt[3]{\left(-0,2\right)^3}=-0,2\)
c ) \(\sqrt{12}+6\sqrt{3}+\sqrt{27}=2\sqrt{3}+6\sqrt{3}+3\sqrt{3}=11\sqrt{3}\)
Câu 2 :
a ) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a-\sqrt{ab}+b\)
a: \(A=\dfrac{a-\sqrt{ab}-a}{a-b}:\dfrac{a+\sqrt{ab}-a}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
\(=\dfrac{-\sqrt{ab}}{a-b}\cdot\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{ab}}=\dfrac{-\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
b: Khi a=7-4 căn 3 và b=7+4 căn 3 thì
\(A=\dfrac{-\left(2-\sqrt{3}+2+\sqrt{3}\right)}{2-\sqrt{3}-2-\sqrt{3}}=\dfrac{-4}{-2\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)
a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)
Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)
b, Tự lm nhé.
câu 2 này ms làm tức thì nà
đầu tiên t c/m câu phụ \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\le\dfrac{3\sqrt{3}}{2}\)
đặt P =VT ta có \(P\le\left|P\right|=\sqrt{P^2}\)
vậy ta c/m \(P^2\le\dfrac{27}{4}\)
<=> \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\le\dfrac{27}{4}\)
không mất tính tổng wat giả sử \(a\ge b\ge c\) (2)
dễ thấy \(\left(b-c\right)^2\le b^2;\left(c-a\right)^2\le a^2\)
=> c/m :\(a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\Leftrightarrow4a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\)
áp dụng AM-GM ta có
\(4a^2b^2\left(a-b\right)^2=\left(2ab\right)\left(2ab\right)\left(a^2-2ab+b^2\right)\le\left[\dfrac{2\left(2ab\right)+\left(a^2-2ab+b^2\right)}{3}\right]^3=\left(\dfrac{a^2+2ab+b^2}{3}\right)^3=\dfrac{\left(a+b\right)^6}{27}\)
mặt khác từ (2) ta có \(a+b\le a+b+c=3\)
=>dpcm
@quay trở lại bài toán áp dụng câu phụ mik vừa ns c2 <=> c/m
\(\left(a^3+b^3+c^3\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{243}{4}\)
nhân 3 cho 2 vế r áp dụng AM-GM
\(\left(a^3+b^3+c^3\right)3\left(a+b\right)\left(a+c\right)\left(c+b\right)\)\(\le\dfrac{\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{4}=\dfrac{\left(a+b+c\right)^6}{4}=\dfrac{729}{4}\)
=> dpcm
giúp jum t @Neet;@Ace Legona (có cách khác AM-GM thì qá tốt nha!!)