K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Theo hệ quả của bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Mà \(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức 

\(\Rightarrow P\ge\frac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\frac{9}{xy+yz+xz+3}\left(1\right)\)

Ta có : \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\frac{9}{xy+yz+xz+3}\ge\frac{9}{6}=\frac{3}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow P\ge\frac{3}{2}\)

Vậy \(P_{min}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!