Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(d_1\right):y=-x+1\)
\(\left(d_2\right):y=x-1\)
\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)
a) Để (d1) và (d3) vuông góc với nhau:
\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)
Vậy k=0
b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)
Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)
\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)
Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm
c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua
Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k
\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)
Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.
a, (d1) y = -x + 1
(d3) y = \(\dfrac{k+1}{1-k}\) x -\(\dfrac{k+1}{1-k}\) ĐK k \(\ne\) 1
Để d1 \(\perp\) d3 \(\Leftrightarrow\) -1.\(\dfrac{k+1}{1-k}\) = -1 \(\Rightarrow\)k+1=1-k
\(\Rightarrow\) k = 0 (TM)
b, Xét pt hoành độ giao điểm của d1 và d2
x-1 = 1-x \(\Leftrightarrow\) x= 1 \(\Rightarrow\) y = 0
vậy A(1;0)
Để d1 , d2 và d3 đồng quy \(\Leftrightarrow\) A thuộc d3
thay A(1;0) vào d3 đc
0 = 0.k
Vậy vs mọi k\(\ne\) 1 thì d1,d2,d3 .....
c, Gọi B(xB;yB) là điểm cố định d3 luôn đi qua với mọi k khác 1
Ta có
k.xB+xB+k.yB-yB-k-1=0 đúng với mọi k\(\ne\)1
\(\Leftrightarrow\)k(xB+yB-1)+(xB-yB-1) =0 đúng với ...
\(\Rightarrow\left\{{}\begin{matrix}x_B+y_B=1\\x_B-y_B=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_B=1\\y_B=0\end{matrix}\right.\)
=> B(1;0) ...
Nguyễn Việt Lâm, Phùng Khánh Linh, Thiên Hàn, Khánh Như Trương Ngọc, Trần Trung Nguyên, Bonking, Nguyễn Thị Thảo Vy, KHUÊ VŨ, Phạm Tiến, Nigou Nguyễn , Mysterious Person, Mashiro Shiina, Nguyễn Thanh Hằng, Aki Tsuki, ...
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+2=-2\\y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
Thay x=-4 và y=-2 vào (d3), ta được:
\(-4\left(k+1\right)+k=-2\)
=>\(-4k-4+k=-2\)
=>-3k=-2+4=2
=>\(k=\dfrac{2}{-3}=-\dfrac{2}{3}\)
\(b,\text{PT hoành độ giao điểm: }-2x+5=x-1\Leftrightarrow x=2\Leftrightarrow y=1\Leftrightarrow A\left(2;1\right)\\ \text{Vậy }A\left(2;1\right)\text{ là giao điểm }\left(d_1\right)\text{ và }\left(d_2\right)\\ c,\text{Gọi }\left(d_3\right):y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \left(d_3\right)\text{//}\left(d_1\right)\text{ và }M\left(-2;1\right)\in\left(d_3\right)\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne5\\-2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(d_3\right):y=-2x-1\)
a, ta có
(d1)=(d2)
2x-7=-x+5
\(\Leftrightarrow\)3x=12
\(\Leftrightarrow\)x=4
ta có
(d1)=(d3)
2x-7=kx+5
\(\Leftrightarrow\)2.4-7=k4+5
\(\Leftrightarrow\)k=-1
d3//d2 \(\Rightarrow a=-1\)
d3 cắt d1 tại điểm có hoành độ bằng 1
\(\Rightarrow a+b=2\)
Ta có hệ
\(\left\{{}\begin{matrix}a=-1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)