Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`2,`
`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`
`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`
`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`
`= 0 + 0 + 5`
`= 5`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5
=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+2x+5\)
b: \(H\left(x\right)=P\left(x\right)+Q\left(x\right)=-10x^3+9x^2+4x+10\)
\(H\left(\dfrac{1}{2}\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+2+10=13\)
c: Q(x)-P(x)=6
\(\Leftrightarrow3x^2=6\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(4)D=x^2+x+1\)
\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.
Các câu khác lm tương tự nhé.
Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy
hok tốt~
\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )
\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)
\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )
\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )
\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)
\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )
\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)
\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)
a) Ta có: P(x) = 2x5 + 2 - 6x2 - 3x3 + 4x2 - 2x + x3 + 4x5
= (2x5 + 4x5) + 2 - (6x2 - 4x2) - (3x3 - x3) - 2x
= 6x5 + 2 - 2x2 - 2x3 - 2x
b) P(x) = 6x5 - 2x3 - 2x2 - 2x + 2
a: \(A=\dfrac{2}{3}x^2y\cdot\dfrac{3}{4}x^4y^3=\dfrac{1}{2}x^6y^4\)
\(B=\dfrac{-1}{2}xy^2\cdot4x^5y^2=-2x^6y^4\)
b: \(C=A-B=\dfrac{-3}{2}x^6y^4\)
Bậc là 10
c: A-B nhận được giá trị âm với mọi x,y
a: Trường hợp 1: x=1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}+5=\dfrac{1}{2}-\dfrac{3}{2}+5=3\)
Trường hợp 2: x=-1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}+5=\dfrac{1}{2}+\dfrac{3}{2}+5=2+5=7\)
b: Trường hợp 1: x=1/2; y=1
\(B=2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{1}{2}\cdot1+1^2=\dfrac{1}{2}-\dfrac{3}{2}+1=-1+1=0\)
Trường hợp 2: x=1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}\cdot\left(-1\right)+1=3\)
Trường hợp 3: x=-1/2; y=1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot1+1=\dfrac{1}{2}+\dfrac{3}{2}+1=3\)
Trường hợp 4: x=-1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1=\dfrac{1}{2}-\dfrac{3}{2}+1=0\)