K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2021

\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)

\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)

\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)