K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

M A B C O N D

Gọi \(BC\) cắt \(\left(O;r\right)\) lần thứ hai tại \(N\)\(CD\) là đường kính của \(\left(O;R\right)\)

Do hình chiếu vuông góc của \(O\) trên \(BC\) là trung điểm của \(MN,BC\) nên \(MB=NC\)

Tính đối xứng tâm của đường tròn nên \(NC=AD,NC||AD\) hay \(MB=||AD\)

Suy ra \(AM=DB\). Ta biến đổi:

\(MA^2+MB^2+MC^2=MA^2+\left(MB+MC\right)^2-2MB.MC\)

\(=DB^2+BC^2-2\left(R^2-OM^2\right)=\left(2R\right)^2-2\left(R^2-r^2\right)=2\left(R^2+r^2\right)\)

NV
3 tháng 8 2021

a.

Gọi D là trung điểm BC \(\Rightarrow OD\perp BC\)

Gọi E là trung điểm AM \(\Rightarrow OE\perp AM\)

\(\Rightarrow\) Tứ giác OEMD là hình chữ nhật (có 3 góc vuông)

\(\Rightarrow MD=OE\) và \(ME=OD\)

\(MA^2+MB^2+MC^2=MA^2+\left(BD-MD\right)^2+\left(DC+MD\right)^2\)

\(=\left(2ME\right)^2+\left(BD-MD\right)^2+\left(BD+MD\right)^2\) (do \(BD=CD\))

\(=4ME^2+2BD^2+2MD^2\)

\(=2\left(ME^2+BD^2\right)+2\left(ME^2+MD^2\right)\)

\(=2\left(OD^2+BD^2\right)+2\left(OD^2+MD^2\right)\)

\(=2OB^2+2OM^2\)

\(=2R^2+2r^2\) cố định (đpcm)

b. Gọi G là giao điểm OM và AD

Theo c/m câu a ta có \(\left\{{}\begin{matrix}OD||AM\\OD=EM=\dfrac{1}{2}AM\end{matrix}\right.\) 

Theo định lý Talet: \(\dfrac{DG}{AG}=\dfrac{OD}{AM}=\dfrac{OG}{GM}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AD\\OG=\dfrac{1}{3}OM\end{matrix}\right.\)

Do O, M cố định \(\Rightarrow\) G cố định

Mặt khác trong tam giác ABC do D là trung điểm AB \(\Rightarrow\) AD là trung tuyến

Mà \(AG=\dfrac{2}{3}AD\Rightarrow\) G là trọng tâm tam giác ABC

\(\Rightarrow\) Trọng tâm tam giác ABC cố định

NV
3 tháng 8 2021

undefined

26 tháng 7 2019

\(\sqrt{6}-=9\)

\(pt\Leftrightarrow x^2+x+1=0\)

14 tháng 8 2018

Kẻ OE ⊥ AB; OFAC

Đặt AC=a, AM=b, AN=c

r 2 = a 2 2 + c - b 2 2

R 2 = a 2 2 + c + b 2 2

Ta chứng minh được:  a 2 + b 2 + c 2 = 2 R 2 + r 2

10 tháng 12 2015

kho qua ha

 

14 tháng 11 2023

a:

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC; OA;AO lần lượt là phân giác của \(\widehat{BOC};\widehat{BAC}\)

Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{BOA}=45^0\)

OA là phân giác của \(\widehat{BOC}\)

=>\(\widehat{BOC}=2\cdot\widehat{BOA}=90^0\)

Xét tứ giác OBAC có \(\widehat{OBA}=\widehat{BOC}=\widehat{OCA}=90^0\)

nên OBAC là hình chữ nhật

Hình chữ nhật OBAC có OB=OC

nên OBAC là hình vuông

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc BOM và DB=DM

Xét (O) có

EM,EC là tiếp tuyến

Do đó: EM=EC và OE là phân giác của góc MOC

\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)

\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{MOC}\right)\)

\(=\dfrac{1}{2}\cdot\widehat{BOC}=\dfrac{1}{2}\cdot90^0=45^0\)

c: Gọi giao điểm của OA và BC là H

AB=AC

OB=OC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{KBA}+\widehat{KBO}=\widehat{OBA}=90^0\)

\(\widehat{CBK}+\widehat{BKO}=90^0\)(ΔBHK vuông tại H)

mà \(\widehat{OBK}=\widehat{OKB}\)(OK=OB)

nên \(\widehat{KBA}=\widehat{CBK}\)

=>BK là phân giác của góc ABC

Xét ΔABC có

BK,AK là các đường phân giác

Do đó: K là tâm đường tròn nội tiếp ΔABC