Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: F(x)=3x^3-2x^2+5x-7
G(x)=3x^3-2x^2+5x+7x^2+3=3x^3+5x^2+5x+3
Bậc của F(x),G(x) đều là 3
b: N(x)=G(x)-F(x)
\(=3x^3+5x^2+5x+3-3x^3+2x^2-5x+7=7x^2+10\)
M(x)=2F(x)+G(x)
\(=6x^3-4x^2+10x-14+3x^3+5x^2+5x+3\)
\(=9x^3+x^2+15x-11\)
c: x^2-3x=0
=>x=0 hoặc x=3
\(M\left(0\right)=9\cdot0^3+0^2+15\cdot0-11=-11\)
\(M\left(3\right)=9\cdot3^3+3^2+15\cdot3-11=286\)
d: N(x)=7x^2+10>=10
Dấu = xảy ra khi x=0
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
bạn chỉ cần rút gọn đa thức rồi sau đó tính bằng cách nhóm các đa thức đồng dạng lại thôi
vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0
ta có g(1)=c*12+b*1+a=a+b+c=0
vậy 1 là 1 nghiệm của g(x)
a.
f(x) + g(x)
= x^2 + 5x + 5 + x^2 - 4x + 3
= 2x^2 + x + 8
b.
Thay x = 1 vào f(x), ta có:
1^2 + 5 . 1 + 5
= 1 + 5 + 5
= 11
Vậy x = 1 không là nghiệm của f(x)
Thay x = 1 vào g(x), ta có:
1^2 - 4 . 1 + 3
= 1 - 4 + 3
= 0
Vậy x = 1 là nghiệm của g(x)
c.
f(x) = g(x)
x^2 + 5x + 5 = x^2 - 4x + 3
x^2 + 5x - x^2 + 4x = 3 - 5
9x = - 2
x = - 2/9