K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

\(\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)

\(A=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}\)

A=\(\frac{1}{1}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

A=\(1-\frac{1}{10^2}\)

A=\(1-\frac{1}{100}\)

A=\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)