Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nam có là một phần tử của tập hợp A
Ngân không là một phần tử của tập hợp B
b) \(A = \){Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}
\(B = \){Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}
A= {Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}
X = {Khánh; Bình; Hương; Chi; Tú }
Có Nam và Ngân chỉ tham gia chuyên đề 1.
Tập hợp các thành viên chỉ tham gia Chuyên đề 1 mà không tham gia Chuyên đề 2 là
G = {Nam; Ngân}
X = {Khánh; Bình; Hương; Chi; Tú}
A= {Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}
B = {Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}
Dễ thấy: Các phần tử của X đều là phần tử của tập hợp A và tập hợp B.
Do đó \(X \subset A\) và \(X \subset B\).
Kí hiệu H là tập hợp tất cả các thành viên tham gia chuyên đề 1 hoặc chuyên đề 2.
Tập hợp các bạn tham gia chuyên đề 1: A= {Nam; Hương; Chi; Tú; Bình; Ngân; Khánh}
Tập hợp các bạn tham gia chuyên đề 2: B = {Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}
Vậy H = {Nam; Ngân; Hân; Hiền; Lam; Khánh; Bình; Hương; Chi; Tú }
Chú ý khi giải
Mỗi phần tử chỉ liệt kê một lần.
Ta có: \(B = \){Hương; Chi; Tú; Khánh; Bình; Hân; Hiền; Lam}
và H = {Hương; Hiền; Hân}
Vậy các phần tử của H đều là phần tử của tập hợp B.
Chọn ngẫu nhiên 2 chuyên gia vào ban tổ chức là một tổ hợp chập 2 của 22 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{22}^2\)( phần tử)
Gọi A là biến cố “Chọn được 2 chuyên gia ở hai châu lục khác nhau vào ban tổ chức”
Để chọn được 2 chuyên gia ở hai châu lục khác nhau vào ban tổ chức ta phải chọn 1 chuyên gia đến từ châu Á và 1 chuyên gia đến từ châu Âu. Có 10 cách chọn 1 chuyên gia đến từ châu Á và 12 cách chọn 1 chuyên gia đến từ châu Âu. Do đó, theo quy tắc nhân số phần tử của biến cố A là: \(n\left( A \right) = 10.12 = 120\)( phần tử)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{C_{22}^2}} = \frac{{40}}{{77}}\)
a) Số cách chọn 6 trong 20 học sinh vào Ban quản lí là: \(C_{20}^6 = 38{\rm{ }}760\)
b) - chọn Trưởng ban có 20 cách.
- chọn 1 Phó ban có 19 cách.
- chọn 4 trong 18 thành viên còn lại vào ban quản lí có: \(C_{18}^4\)
Vậy có tất cả số cách là: \(20.{\rm{ }}19.\;C_{18}^4\; = 1{\rm{ }}162{\rm{ }}800\)
Ta xét từng câu:
(I) Hải Phòng có phải là một thành phố trực thuộc Trung ương không?
Đây là câu hỏi, không phải mệnh đề.
(II) Hai vectơ có độ dài bằng nhau thì bằng nhau.
Đây có là mệnh đề.Mệnh đề này sai.
Hai vecto được gọi là bằng nhau nếu chúng có cùng hướng và độ dài bằng nhau.
(III) Một tháng có tối đa 5 ngày chủ nhật.
Đây có là mệnh đề và là 1 mệnh đề đúng.
(IV) 2019 là một số nguyên tố.
Đây có là mệnh đề.
Ta có : 2019= 3. 673 nên 2019 là hợp số. Mệnh đề này sai.
(V) Đồ thị của hàm số y = a x 2 ( a ≠ 0 ) là một đường parabol.
Đây là mệnh đề đúng.
(VI) Phương trình bậc hai a x 2 + b x + c = 0 ( a ≠ 0 ) có nhiều nhất là 2 nghiệm.
Đây là mệnh đề đúng.
Như vậy có tất cả 5 mệnh đề và 3 mệnh đề đúng.
Đáp án B
Tham khảo:
Ta có bảng sau:
Dễ thấy: Có 10 bạn tham gia (1 chuyên đề hoặc cả hai)
Vậy có 2 thành viên vắng mặt trong cả hai chuyên đề.