Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)
= \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{2}{a-1}\)
b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1
=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }
\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)
\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)
Điều kiện : a, b\(\ge0\)
tham khao nha
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\left(\frac{\sqrt{b}+\sqrt{a}}{\sqrt{ab}}\right)\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{a-2\sqrt{ab}+b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
vay \(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
ĐK : tự ghi nha
\(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)
\(P=\left(\frac{3\sqrt{a}}{a+\sqrt{ab}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
\(=\left(\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{3a}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\left(a+\sqrt{ab}+b\right)}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{2\left(a+\sqrt{ab}+b\right)}{\cdot\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{2\left(a-2\sqrt{ab}+b\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)\left(a+\sqrt{ab}+b\right)}\)
\(=\frac{2}{a-1}\)