Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(\left\{{}\begin{matrix}BD\perp\left(SAC\right)\\SC\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow BD\perp SC\)
\(\left\{{}\begin{matrix}SB\perp\left(ABCD\right)\Rightarrow SB\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\left\{{}\begin{matrix}BC\perp\left(SAB\right)\\SA\in\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow BC\perp SA\)
\(\left\{{}\begin{matrix}SB\perp\left(ABCD\right)\Rightarrow SB\perp AB\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SBC\right)\)
\(\left\{{}\begin{matrix}SC\in\left(SBC\right)\\AB\perp\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow AB\perp SC\)
a.
Góc giữa SM và MQ là góc SMQ
Do chóp đều nên \(SM=SN=SP=SQ=8a\sqrt{2}\)
Áp dụng định lý hàm cosin:
\(cos\widehat{SMQ}=\dfrac{SM^2+MQ^2-SQ^2}{2SM.MQ}=\dfrac{\sqrt{2}}{4}\)
\(\Rightarrow\widehat{SMQ}\approx69^018'\)
b.
Góc giữa SN và NP là góc SNP
Do chóp đều \(\Rightarrow\widehat{SNP}=\widehat{SMQ}=69^018'\)
c.
Do MN song song PQ nên góc giữa SQ và MN bằng góc giữa SQ và PQ là góc SQP
Do chóp đều nên \(\widehat{SQP}=\widehat{SMQ}=69^018'\)
d.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(MNPQ\right)\)
\(\Rightarrow SO\perp NQ\)
Mà \(NQ\perp MP\) (2 đường chéo hình vuông)
\(\Rightarrow NQ\perp\left(SMP\right)\Rightarrow NQ\perp SP\)
\(\Rightarrow\) Góc giữa SP và NQ bằng 90 độ
a: AC vuông góc BD
AC vuông góc SO
=>AC vuông góc (SBD)
=>SB vuông góc AC
mà AC vuông góc BD
nên AC vuông góc (SBD)
BD vuông góc AC
BD vuông góc SO
=>BD vuông góc (SAC)
=>BD vuông góc SA
b: Xét ΔACB có CO/CA=CI/CB
nên OI//AB
=>OI vuông góc BC
BC vuông góc OI
BC vuông góc SO
=>BC vuông góc (SOI)
=>(SBC) vuông góc (SOI)
● SA ⊥ (ABCD) ⇒ SA ⊥ AB, SA ⊥ AD.
⇒ Các tam giác SAB, SAD vuông tại A.
● BC ⊥ SA, BC ⊥ AB.
⇒ BC ⊥ SB ⇒ ΔSBC vuông tại B.
● CD ⊥ SA, CD ⊥ AD.
⇒ CD ⊥ SD ⇒ ΔSCD vuông tại D.
\(\left\{{}\begin{matrix}SM\perp\left(MNPQ\right)\Rightarrow SM\perp PN\\PN\perp MN\end{matrix}\right.\) \(\Rightarrow PN\perp\left(SMN\right)\)
Lại có \(\left\{{}\begin{matrix}PN\perp\left(SMN\right)\\SN\in\left(SMN\right)\end{matrix}\right.\) \(\Rightarrow PN\perp SN\)
M S N P Q
Giải :a) Vì SM ⊥ ( MNPQ ) => SM ⊥ PN
Xét hình vuông MNPQ có : MN ⊥ PN
=> PN ⊥ ( SMN )
b) Ta có PN ⊥ ( SMN ) => PN ⊥ SN