Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(M+N=3x^2-4xy-6y^2+1+2x^2-4xy+6y^2-1\)
\(=\left(3x^2+2x^2\right)-\left(4xy+4xy\right)+\left(6y^2-6y^2\right)+1-1\)
\(=5x^2-8xy\)
\(M-N=3x^2-4xy-6y^2+1-\left(2x^2-4xy+6y^2-1\right)\)
\(=3x^2-4xy-6y^2+1-2x^2+4xy-6y^2+1\)
\(=\left(3x^2-2x^2\right)-\left(4xy-4xy\right)-\left(6y^2+6y^2\right)+2\)
\(=x^2-12y^2+2\)
Bài 2 :
\(\left(1-2x\right)\left(5-3x\right)-\left(6x+5\right)\left(x-4\right)\)
\(=5-3x-10x+6x^2-6x^2+24x-5x+20\)
\(=\left(6x^2-6x^2\right)+\left(24x-3x-5x-10x\right)+25\)
\(=8x+25\)
Bài 3 :
\(x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow20+2xy=4\Rightarrow2xy=-16\Rightarrow xy=-8\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=2\left(20-\left(-8\right)\right)=40+16=56\)
Bài 4 :
\(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1}\)( luôn dương )
\(\Rightarrow\)Biểu thức luôn dương \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)
\(=9-3-1+27\)
=36-4=32
c: \(C=-0.7xy^2-2x^2y-4.5xy\)
\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)
\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{12}{5}\)
Câu 2:
a: \(M=\left(3x^2y^3-3x^2y^3\right)+\left(2x^2y\right)+\left(3xy^2-5xy^2\right)+4\)
\(=2x^2y-2xy^2+4\)
Khi x=-1 và y=2 thì \(M=2\cdot\left(-1\right)^2\cdot2-2\cdot\left(-1\right)\cdot2^2+4\)
\(=4+2\cdot4+4=16\)
b: \(M+N=3xy^2+2x+3\)
\(M-N=4x^2y-7xy^2-2x+5\)
a)-7
b) 7
c) -2
d) 12
trả lời chi tiết xíu đc kh ạ