K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)

b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)

\(=9-3-1+27\)

=36-4=32

c: \(C=-0.7xy^2-2x^2y-4.5xy\)

\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)

\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)

\(=\dfrac{12}{5}\)

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

16 tháng 4 2019

b) x^2 y^2 + xy + x^3 + y^3

Tai x = -1 ,y = -3 ta co

(-1)^2 (-3)^2 + (-1 ) (-3) + (-1)^3 + (-3)^3

=> 1 x 9 -4 + ( -1) + (-27 )

=> 5 - 28

=> -23 

14 tháng 4 2019

Thay x = \(\frac{1}{2}\), y = \(\frac{-1}{3}\)vào biểu thức A

Ta được: \(A=3.\left(\frac{1}{2}\right)^3.\left(\frac{-1}{3}\right)+6.\left(\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(\frac{-1}{3}\right)^2\)

\(=\frac{3.1.\left(-1\right)}{8.3}+\frac{6.1.1}{4.9}+\frac{3.1.1}{2.9}\)

\(=\frac{-1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{5}{24}\)

Thay x = -1, y = 3 vào biểu thức B

Ta được:

B = (-1)2. 32 + (-1) . 3 +(-1)3 +33

   = 9 + (-3) + (-1) + 27  

   = 32

14 tháng 4 2019

\(A=3x^2y+6x^2y^2+3xy^2\)

\(A=3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)^2\)

\(A=\left(-\frac{1}{8}\right)+\frac{1}{6}+\frac{1}{6}\)

\(A=\frac{5}{24}\)

Vậy: Biểu thức A tại x = 1/2; y = -1/3 là: 5/24

\(B=x^2y^2+xy+x^3+y^3\)

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)

\(B=9+\left(-3\right)+26\)

\(B=32\)

Vậy: biểu thức B tại x = -1; y = 3 là: 32

9 tháng 4 2020

B.1:

a) Với x = 1/2, y = -1/3, A= \(3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(-\frac{1}{3}\right)^3\)=\(\frac{-1}{8}+\frac{1}{6}+\frac{-1}{18}\)=\(\frac{-1}{72}\)

b)Với x = -1, y = 3, B=

\(\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)\(=9+\left(-3\right)+\left(-1\right)+27\)

\(=32\)

B.2:

\(P\left(-1\right)=\left(-1\right)^4+2.\left(-1\right)^2+1\)\(=1+2+1=4\)

\(P\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^4+2.\left(\frac{1}{2}\right)^2+1\)\(=\frac{1}{16}+\frac{1}{2}+1\)\(=\frac{25}{16}\)

\(Q\left(-2\right)=\left(-2\right)^4+4\left(-2\right)^3+2\left(-2\right)^2-4\left(-2\right)+1\)\(=16+\left(-32\right)+8-\left(-8\right)+1=1\)

\(Q\left(1\right)=1^4+4.1^3+2.1^2=1+4+2=7\)

Chúc cậu học tốt hihi

26 tháng 6 2020

Bài 1 

\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^{2^2}-12x^2y^3\)

\(=(15x^2y^3-12x^2y^3)+(7x^2-12x^2)+(-8x^3y^2+11x^3y^2)\)

\(=3x^2y^3-5x^2+3x^3y^2\)

Bậc của hệ số cao nhất là 5

\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)

\(=(3x^5y-\frac{1}{2}x^5y)+(\frac{1}{3}xy^4+2xy^4)+(\frac{3}{4}x^2y^3-x^2y^3)\)

\(=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)

Bậc của hệ số cao nhất là 6

Bài 2 

\(a.A=5xy-y^2-2xy+4xy+3x-2y\)

\(=(5xy-2xy+4xy)-y^2+3x-2y\)

\(=7xy-y^2+3x-2y\)

\(b.B=\frac{1}{2}ab^2-\frac{1}{8}ab^2+\frac{3}{4}a^2b-\frac{3}{8}a^2b-\frac{1}{2}ab^2\)

\(=(\frac{1}{2}ab^2-\frac{1}{8}ab^2-\frac{1}{2}ab^2)+(\frac{3}{4}a^2b-\frac{3}{8}a^2b)\)

\(=-\frac{1}{8}ab^2+\frac{3}{8}a^2b\)

\(c.C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(=(2a^2b+5a^2b)+(-8b^2-3b^2)+(5c^2+4c^2)\)

\(=7a^2b-11b^2+9c^2\)

Bài 3

a. Thay x = 2 và y = 9 vào biểu thức A có

    \(A=2.2^2-\frac{1}{3}.9\)

       \(=8-3=3\)

Vậy giá trị biểu thức A = 3 khi x = 2 và y = 9

b.Thay a = -2 và b = -1/3 vào biểu thức B có 

\(B=\frac{1}{2}.(-2)^2-3.(-\frac{1}{3})^2\)

  \(=\frac{1}{2}.4-3.\frac{1}{9}\)

  \(=2-3=-1\)

Vậy giá trị biểu thức B = -1 khi x = -2 và y = -1/3

c.Thay x = -1/2 và y = 2/3 vào biểu thức P có 

\(P=2.(\frac{-1}{2})^2+3.\frac{-1}{2}.\frac{2}{3}+(\frac{2}{3})^2\)

\(=2.\frac{1}{4}-1+\frac{4}{9}\)

\(=\frac{1}{2}-\frac{5}{9}=\frac{-1}{18}\)

Vậy giá trị biểu thức P = -1/18 khi x = -1/2 và y = 2/3

d. Thay a = -1/3 và b = -1/6 vào biểu thức có 

\(12.\frac{-1}{3}.(\frac{-1}{6})^2\)

\(=-4.\frac{1}{36}=\frac{-1}{9}\)

Vậy giá trị biểu thức bằng -1/9 khi a = -1/3 và b = -1/6

e.Thay x = 2 và y = 1/4 vào biểu thức có 

\((\frac{-1}{2}.2.\frac{1^2}{4^2}).(\frac{2}{3}.2^3)\)

\(=-\frac{1}{16}.\frac{16}{3}=\frac{-1}{3}\)

Vậy giá trị biểu thức bằng -1/3 khi x = 2 và y = 1/4

26 tháng 6 2020

Bài 4 

\(a.(\frac{-1}{2}a^2)(-24a).(4m-n)\)

\(=\frac{-1}{2}.(-24).a^2.a.(4m-n)\)

\(=12a^3.(4m-n)\)

\(=48a^3m-12a^3n\)

\(b.(x^2)(x^3.2).(-1).(-3a)\)

\(=2.(-1).(-3).x^2.x^3.a\)

\(=6x^5a\)

Bài 5 

\(a.\frac{1}{2}x^2(2x^2y^2z).(\frac{-1}{3}x^2y^3)\)

\(=\frac{1}{2}.2.(\frac{-1}{3}).x^2.x^2.x^2.y^2.y^3.z\)

\(=\frac{-1}{3}x^6y^5z\)

Bậc của đơn thức trên là 12

\(b.(-x^2y)^3.(\frac{1}{2}x^2y^3).(-2xy^2z)^2\)

\(=\frac{1}{2}.4.x^5.x^2.x^2.y^3.y^3.y^4.z^2\)

\(=2x^9y^{10}z^2\)

Bậc của đơn thức trên là 21

Bài 6 

\(a.(-6x^3zy).(\frac{2}{3}yz)^2\)

\(=-6.\frac{4}{9}.x^3.y.y^2.z.z^2\)

\(=-\frac{8}{3}x^3y^3z^3\)

\(b.(xy-5x^2y^2+xy^2-xy^2)-(xy^2+3xy^2-9x^2y)\)

\(=-5x^2y^2+9x^2y-4xy^2+xy\)

Học tốt

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0

5 tháng 8 2020

a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)

\(=x^2+2xy+y^3\)

Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :

(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8

= 1 - 1 + 1 - 1 + 1 =1

10 tháng 4 2018

C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1

C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1

C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1

=>Bặc: 3

D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2

D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2

D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2

=> Bậc :4

E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1

E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1

E= 2x2y + \(\dfrac{13}{2}\)xy + 1

=> Bậc: 3

K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1

K= (5x3 - 6x3 ) + (- 4x + 4x) +1

K= -1x3 + 1

=>Bậc: 3

F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5

F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5

F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5

=> Bậc :6

CHÚC BN HỌC TỐT ^-^