Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có:
\(90=2\cdot3^2\cdot5\)
\(135=3^3\cdot5\)
\(270=2\cdot5\cdot3^3\)
\(\Rightarrow x=ƯCLN\left(90;135;270\right)=3^2\cdot5=45\)
Chọn đáp án D
Câu 3:
Ta có:
\(27=3^3\)
\(315=3^2\cdot5\cdot7\)
\(\Rightarrow y=BCNN\left(27;315\right)=3^3\cdot5\cdot7=945\)
Chọn phương án B
Câu 4: Ta có:
\(BCNN\left(11;12\right)=132\)
\(\Rightarrow BC\left(11;12\right)=\left\{0;132;264;396;528;660;792;924;...\right\}\)
Vậy có 7 số có 3 chữ số là bội chung của 11 và 12
Chọn phương án B
Phần 2
Câu 5:
Gọi x (tổ) là số tổ có thể chia (x ∈ ℕ*)
⇒ x ∈ ƯC(27; 18)
Ta có:
27 = 3³
18 = 2.3²
⇒ ƯCLN(27; 18) = 3² = 9
⇒ x ∈ ƯC(27; 18) = Ư(9) = {1; 3; 9}
Vậy có 3 cách chia tổ là: 1 tổ; 3 tổ và 9 tổ
Để mỗi tổ có số học sinh ít nhất thì số tổ là lớn nhất là 9 tổ
Phần 2
Câu 6
Gọi x (cây) là số cây cần tìm (x ∈ ℕ*)
Do số cây là nhỏ nhất và khi chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9 nên x + 1 = BCNN(3; 4; 5; 10)
Ta có:
3 = 3
4 = 2²
5 = 5
10 = 2.5
⇒ x + 1 = BCNN(3; 4; 5; 10) = 2².3.5 = 60
⇒ x = 60 - 1 = 59
Vậy số cây cần tìm là 59 cây
a) Sai vì 8 không là ước chung của 12 và 24
Sửa lại:
Ư(12) = {1; 2; 3; 4; 6; 12}
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
=> ƯC(12, 24) = {1; 2; 3; 4; 6; 12}
b) Đúng.
Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}
Ư(12) = {1; 2; 3; 4; 6; 12}
Ư(48) = {1; 2; 3; 4; 6; 12; 24; 48}
=> ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.
a) Đúng
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}
=> ƯC(24,30) = {1; 2; 3; 6).
Vậy 6 \( \in \) ƯC(24, 30)
b) Sai
Ư(28) = {1; 2; 4; 7; 14; 28}
Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
=> ƯC(28,42) = {1; 2; 7; 14}.
Vậy 6 \( \notin \) ƯC(28,42)
c) Đúng
Ư(18) = {1; 2; 3; 6; 9; 18}
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
=> ƯC(18, 24, 42} = {1; 2; 3; 6).
Vậy 6 \( \in \) ƯC(18, 24, 42)
Chọn B