K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
9 tháng 12 2023

a)Thay x=2(TMDK) vào bt Q :

\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)

b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)

c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)

\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)

19 tháng 10 2023

a/

\(A=\dfrac{x+15}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{x+3}=\)

\(=\dfrac{x+15+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x-3}\)

b/

\(\dfrac{3}{x-3}=-\dfrac{1}{2}\Rightarrow x=x=-3\)

c/

Để A nguyên

\(\Rightarrow x-3=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x=\left\{0;-2;4;6\right\}\)

a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)

\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)

\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)

\(=\dfrac{2x-14}{x-3}\)

b) Ta có: \(x^2-9=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)

Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:

\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)

Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)

c) Để P nguyên thì \(2x-14⋮x-3\)

\(\Leftrightarrow2x-6-8⋮x-3\)

mà \(2x-6⋮x-3\)

nên \(-8⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(-8\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)

a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)

b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)

\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)

P<=2

=>x+1>0

=>x>-1

24 tháng 5 2022

Với `x \ne -5,x \ne -1` có:

`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`

`A=[x^2-3x-4]/[(x+5)(x+1)]`

`A=[(x-4)(x+1)]/[(x+5)(x+1)]`

`A=[x-4]/[x+5]`

24 tháng 5 2022

\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)

Câu 1: 

1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{7}{x^2+3}\)

NV
3 tháng 4 2021

Câu 2a đề sai, pt này ko giải được

2b.

\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)

Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)

\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)

3a.

\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)

\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)

3b

Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6

\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)

Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)

\(\Rightarrow2021^{2022}-1⋮6\)

\(\Rightarrow S-1⋮6\)

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.

22 tháng 3 2020

a. Khi x=2 thì P=\(\frac{4+2}{3\left(2+3\right)}=\frac{2}{5}\)

b. Q=\(\frac{1}{x-1}+\frac{1}{x+1}-\frac{3-x}{x^2-1}\)

=\(\frac{x+1+x-1-3+x}{x^2-1}=\frac{3x-3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x+1}\)

c. ĐK:\(\left\{{}\begin{matrix}x\ne-3\\x\ne\pm1\end{matrix}\right.\)

P.Q<1 \(\Leftrightarrow\frac{x^2+x}{3\left(x+3\right)}.\frac{3}{\left(x+1\right)}< 1\)

\(\Leftrightarrow\frac{x}{x+3}< 1\:\)

TH: X+3 <0 \(\Leftrightarrow x< -3\)

\(\Rightarrow x>x+3\) \(\Leftrightarrow0>3\:\)(vô lí)

TH:X+3>0 \(\Leftrightarrow x>-3\)

\(\Rightarrow x< x+3\Leftrightarrow0< 3\) (luôn đúng)

Vậy khi x>-3 và x\(\ne\pm1\) thì P.Q<1

25 tháng 3 2020

Cảm ơn bạn nhiều nha!

16 tháng 3 2023

\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{x^2-4}\)

\(=\dfrac{-3x+6-2x-4+4x}{x^2-4}\)

\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=-\dfrac{1}{x+2}\left(x\ne2;x\ne-2\right)\)

16 tháng 3 2023

\(\dfrac{-3}{x+2}-\dfrac{2}{x-2}+\dfrac{4x}{x^2-4}\left(x\ne\pm2\right)\)

\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-3x+6-2x-4+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=-\dfrac{1}{x+2}\)