Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)
= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2
= 7x3 + 2x2y4 + 6y2
Bậc của đa thức là 6
Thay x = 1; y = -1 vào ta có:
7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15
b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)
\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)
\(=-3x^3y-6x^2y^5+8y^4\)
Bậc của đa thức là 7
Thay x = 1; y = -1 vào ta có:
(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17
câu 2a) xét (x-1)2> hoặc = 0
(x-1)2+(y+1)2> hoặc bằng 0
(x-1)2+(y+1)2+3> hoặc =3
=> GTNN của biểu thức trên là 3
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
5 Câu :V chia ra phần 1 2 câu phần 2 3 câu nhé ;v
Câu 1 : Theo đề ta có : \(\left(x+1\right)^{2014}+\left(y-1\right)^{2016}=0\)
vì \(\left\{{}\begin{matrix}\left(x+1\right)^{2014}\ge0\forall x\\\left(y-1\right)^{2016}\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)=0\\\left(y-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy GTBT \(3x^7-5y^6+1=3\cdot\left(-1\right)^7-5\cdot1^6+1=-7\)
Câu 2 : Để \(T\left(x\right)=x^{2014}-x=0\)
\(\Leftrightarrow x^{2014}=x\)
mà \(x^{2014}\ge0\forall x\rightarrow x\ge0\) (vì \(x^{2014}=x\))
Vậy x nhận hai giá trị là x = \(\left(0;1\right)\) thì GTBT T(x) bằng 0.