K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(C=-x+\sqrt{x}\)

\(=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)

1: ĐKXĐ: 2-3x>=0

=>x<=2/3

2: ĐKXĐ: -3x^2>=0

=>x^2<=0

=>x=0

3: ĐKXĐ: -2023x^3>=0

=>x^3<=0

=>x<=0

4: ĐKXĐ: -2(x-5)>=0

=>x-5<=0

=>x<=5

5: ĐKXĐ: -5/2-2x>=0

=>2-2x<0

=>2x>2

=>x>1

6: ĐKXĐ: (x^2+1)(3-2x)>=0

=>3-2x>=0

=>-2x>=-3

=>x<=3/2

7: ĐKXĐ: (-x^2-1)(3-x)>=0

=>(x^2+1)(x-3)>=0

=>x-3>=0

=>x>=3

26 tháng 10 2019

a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)

Có: \(-x^2\le0\)với mọi x

=> \(6-x^2\le6\)

=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)

=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)

=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x

=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)

Vậy:...

b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)

Có: \(-\left(x-1\right)^2\le0\)với mọi x

=> \(-\left(x-1\right)^2+5\le5\)

=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)

=> \(0\le B\le\sqrt{5}\)với mọi x

=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)

Vậy:...

26 tháng 10 2019

a)Ta có:

\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)

\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)

28 tháng 5 2021

C1: 

\(1-x>0\Leftrightarrow x< 1\)

C2:

\(2k+1< 0\)

\(\Leftrightarrow k< \dfrac{-1}{2}\)

C3:

\(x+1\ne0\Leftrightarrow x\ne1\)

a: \(P=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{x-\sqrt{x}+\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x}\)

b: Để P<0 thì \(\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)< 0\)

=>1<x<4

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé