Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Khi x =16 (t.m ĐKXĐ) thì B có giá trị là:
\(B=\dfrac{16-6\cdot4}{4-1}=\dfrac{-8}{3}\)
b) Ta có:
\(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}=\dfrac{25\sqrt{x}+6}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3x+18\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-6}\)
c) Ta có:
\(T=\sqrt{A\cdot B}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)}}=\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\overset{Cosi}{\ge}\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(t.m\right)\)
Gọi vận tốc dự định của hai bố con bạn Dũng là x(km/h)(x>0).Đổi: 10 phút =\(\dfrac{1}{6}\)(h)
thời gian dự định đi về quê là \(\dfrac{60}{x}\)(h)
vận tốc đi trên \(\dfrac{1}{3}\)quãng đường là đường xấu hai bố con bạn Dũng là \(x-10\)(km/h)
Thời gian thực tế đi về quê là \(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\)(h)
Vì hai bố con bạn Dũng đã về tới quê chậm mất 10 phút so với dự kiến
Nên ta có pt sau:
\(\left(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\right)-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(\dfrac{20}{x-10}+\dfrac{40}{x}-\dfrac{1}{6}=\dfrac{60}{x}\)
⇔\(20x+40\left(x-10\right)-\dfrac{1}{6}x\left(x-10\right)=60\left(x-10\right)\)
⇔\(-\dfrac{1}{6}x^2+\dfrac{5}{3}x+200=0\)
⇒\(\left[{}\begin{matrix}x=40\left(n\right)\\x=-30\left(l\right)\end{matrix}\right.\)
Vậy ......
a, x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)
b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)
b: Để P=1 thì \(x-\sqrt{x}-2=0\)
hay x=4
Lời giải:
1. \(P=\left[\frac{1}{\sqrt{x}(\sqrt{x}-1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}\right]:\frac{x}{(\sqrt{x}-1)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)^2}{x}=\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{x\sqrt{x}}=\frac{x-1}{x\sqrt{x}}\)
2.
\(P>\frac{1}{2}\Leftrightarrow \frac{x-1}{x\sqrt{x}}> \frac{1}{2}\)
\(\Leftrightarrow \frac{2x-2-x\sqrt{x}}{2x\sqrt{x}}>0\)
\(\Leftrightarrow 2x-2-x\sqrt{x}>0\)
\(\Leftrightarrow x\sqrt{x}+2< 2x\)
Điều này vô lý do theo BĐT Cô-si thì:\(x\sqrt{x}+2=\frac{x\sqrt{x}}{2}+\frac{x\sqrt{x}}{2}+2\geq 3\sqrt[3]{\frac{x^3}{2}}>\frac{3x}{\sqrt[3]{2}}> 2x\)
Vậy không tồn tại $x$ thỏa mãn.
1) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{x}\)
\(=\dfrac{x-1}{x\sqrt{x}}\)
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
1.\(\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}=3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)
2.\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-2\sqrt{x}+1}{2}\)
\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(P=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =-\sqrt{3}\)
\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-2\sqrt{x}+1}{2}\\ =\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(x-90) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(x-90) = 222
\(\Leftrightarrow3x+2x-180=222\)
\(\Leftrightarrow5x=402\)
(đoạn này thì ra lẻ nên e ko tính đc ạ)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(90-x) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(90-x) = 222
=> 3x + 180 - 2x = 222
=> x + 180 = 222
=> x = 42 (tmđk)
Vậy lớp 9A có 42 học sinh
lớp 9B có 90 - 40 = 48 học sinh
a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)
\(\Leftrightarrow x-2\sqrt{x}+1=0\)
\(\Leftrightarrow x=1\left(loại\right)\)
a: Khi x=25 thì \(A=\dfrac{5-2}{5-1}=\dfrac{3}{4}\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}=\dfrac{x-4}{x-1}\)
c: \(P=\dfrac{A}{B}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
P<1/2
=>P-1/2<0
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{1}{2}< 0\)
=>\(\dfrac{2\sqrt{x}+2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)
=>\(\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)
=>\(x\in\varnothing\)
a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)
=>\(\sqrt{x}< 1\)
=>\(0< =x< 1\)
c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:
\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)
\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}-1}{2}\)
Câu 1 :
a, \(=8+4-2.6=12-12=0\)
b, đk : x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)