K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Sửa đề:

So sánh:

\(A=\dfrac{10^{2015}+1}{10^{2016}+1}\)\(B=\dfrac{10^{2016}+1}{10^{2017}+1}\)

Giải:

Ta thấy: \(\left\{{}\begin{matrix}A=\dfrac{10^{2015}+1}{10^{2016}+1}< 1\\B=\dfrac{10^{2016}+1}{10^{2017}+1}< 1\end{matrix}\right.\)

\(\Rightarrow\) Áp dụng tính chất \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:

\(B=\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2016}+1+9}{10^{2017}+1+9}=\dfrac{10^{2016}+10}{10^{2017}+10}\)

\(=\dfrac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2015}+1}{10^{2016}+1}\)

\(\Rightarrow\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2015}+1}{10^{2016}+1}\)

Vậy \(B< A\)

Hay \(A>B\)