Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 3n + 3/ 9n + 8 là phân số tối giản thì nó phải có ƯCLN là 1
Đặt d là ƯCLN
=> (3n + 3)-(9n+8) chia hết cho d
=>3(3n+3)-(9n+8) chia hết cho d
=>9n+9-9n-8 chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+3;9n+8)=1
=> (3n + 3)/(9n+8) tối giản
Gọi ƯCLN(3n + 3; 9n + 8) = d (d thuộc N*)
=> 3n + 3 chia hết cho d => 9n + 9 chia hết cho d
và 9n + 8 chia hết cho d
=> 9n + 9 - (9n + 8) chia hết cho d
=> 1 chia hết cho d, mà d thuộc N*
=> d = 1
=> ƯCLN(3n + 3; 9n + 8) = 1
=> \(\frac{3n+3}{9n+8}\)là phân số tối giản
Ta có : abcdeg
= abc .1000 +deg
Lại có : abc = 2 deg
=>abcdeg = 2 deg .1000 +deg
= 2000 . deg + deg
= 2001 . deg
Hay abcdeg ⋮23 ( Vì 2001 ⋮ 23 ) ( đpcm )
\(\frac{7}{3}\)\(+\frac{1}{2}\)\(+\frac{-3}{70}\)\(=\frac{293}{105}\)
\(\frac{5}{12}\)\(+\frac{3}{-16}\)\(+\frac{3}{4}\)\(=\frac{47}{48}\)
\(\frac{5}{3}\)\(+\left(7+\frac{-5}{3}\right)=\frac{5}{3}\)\(+\frac{-5}{3}\)\(+7=0+7=7\)
\(\frac{-7}{31}\)\(+\left(\frac{24}{17}+\frac{7}{31}\right)=\left(\frac{-7}{31}+\frac{7}{31}\right)+\frac{24}{17}=0+\frac{24}{17}\)\(=\frac{24}{17}\)
\(\frac{3}{7}\)\(+\left(\frac{-1}{5}+\frac{-3}{7}\right)=\left(\frac{3}{7}+\frac{-3}{7}\right)+\frac{-1}{5}\)\(=0+\frac{-1}{5}\)\(=\frac{-1}{5}\)
Nếu được cho mình xin 1 k đúng ^_^
Các bạn ơi mình thiếu ở chỗ là
4x5y chia cho 2 ; 5 và 9 đều dư 1
Nha các bạn
Bài 1 :
Gọi mẫu phân số cần tìm là b
Ta có : \(\frac{8}{12}\)\(\frac{8}{12}\)=\(\frac{a}{b}\) Dk :\(-4\le a< 17\)
\(\Rightarrow a\in\left\{-4;-3;...;15;16\right\}\)
\(\Rightarrow\frac{2}{3}=\frac{a}{b}\)
Các phân số càn tìm là \(\frac{2}{3};\frac{-2}{-3};\frac{-4}{-6};\frac{4}{6};\frac{6}{9};\frac{8}{12};\frac{10}{15};\frac{12}{18};\frac{14}{21};\frac{16}{24}\)
a) S=1+2+4+8+...+512
=(1+2)+(4+8)+...+(508+512)
=(3+12+....+1020) chia hết cho 3
b S=1+2+4+8+..+512
số số hạng là:
2+(512-4):4+1=2+129=131(số hạng)
tổng là :
3+(512+4):2.129=33285
goi d(12n+1;30n+2) d là ước của hai số đó
\(\hept{\begin{cases}12n+1chiahetchod\\30n+2chiahetchod\end{cases}}\)<=> sau đó bn cm 1 chia hết cho d là xg